...
首页> 外文期刊>Chemical geology >Sulfide oxidation and iron dissolution kinetics during the reaction of dissolved sulfide with ferrihydrite
【24h】

Sulfide oxidation and iron dissolution kinetics during the reaction of dissolved sulfide with ferrihydrite

机译:溶解硫化物与水铁矿反应过程中硫化物的氧化和铁的溶解动力学

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The reaction between synthetic ferrilrydrite and dissolved sulfide was studied in artificial seawater and 0.42 M NaCl at 25 degreesC over the pH range 4.0-8.2. Electron transfer between solid phase Fe(III) and surface-complexed sulfide results in the reduction of Fe(III) and the formation of elemental sulfur. Subsequent formation of solid phase FeS occurs following dissolution of Fe(II) and reaction with dissolved sulfide. However, the majority of the Fe(II) produced at pH 7.5 remained associated with the oxide surface on the time-scale of these experiments. Rates of both sulfide oxidation and Fe(II) dissolution (in mol l(-1) min(-1)) were expressed in terms of an empirical rate equation of the form: R = k(i)(H2S)(t=0)(0.5)A where k(i) represents the apparent rate constants for the oxidation of sulfide (k(S)) or the dissolution of Fe2+ (k(Fe)), (H2S)(t = 0) is the initial sulfide concentration (in mol l(-1)) and A is the initial ferrilrydrite surface area (in m(2) l(-1)). The rate constant, k(S), for the oxidation of sulfide in seawater at pH 7.5 is 8.4 x 10(-6) +/- 0.9 x 10(-6) mol(0.5) l(0.5) m(-2) min(-1), with the rate of sulfide oxidation being approximately 15 times faster than the rate of Fe(II) dissolution (given that the ratio of sulfide oxidized to Fe(II) produced is 2:1; k(Fe) = 1.1 x 10(-6) 0.2 x 10(-6) Mol(0.5) l(0.5) m(-2) min(-1)). The determination of a fractional order with regard to the initial dissolved sulfide concentration occurs because reaction rates are dependent on the availability of reactive surface sites; the more reactive surface sites become saturated with sulfide at relatively low ferrihydrite to dissolved sulfide ratios. In many natural sulfidic environments, the iron oxide to dissolved sulfide ratio is expected to be lower than during this laboratory study. Thus, surface saturation will exert an important influence on reaction rates in nature. (C) 2003 Elsevier B.V. All rights reserved. [References: 58]
机译:在25℃,pH范围4.0-8.2下,在人工海水和0.42 M NaCl中研究了合成亚铁矾和溶解的硫化物之间的反应。固相Fe(III)与表面复合硫化物之间的电子转移导致Fe(III)还原并形成元素硫。 Fe(II)溶解并与溶解的硫化物反应后,会形成固相FeS。但是,在这些实验的时间尺度上,大多数在pH 7.5下生成的Fe(II)仍与氧化物表面相关。硫化物氧化和Fe(II)溶解的速率(以mol l(-1)min(-1)表示)由以下形式的经验速率方程表示:R = k(i)(H2S)(t = 0)(0.5)A其中k(i)表示硫化物(k(S))氧化或Fe2 +(k(Fe))溶解的表观速率常数,(H2S)(t = 0)为初始值硫化物浓度(以mol l(-1)为单位),A为初始铁锰矿表面积(以m(2)l(-1)表示)。在pH 7.5的海水中氧化硫化物的速率常数k(S)为8.4 x 10(-6)+/- 0.9 x 10(-6)mol(0.5)l(0.5)m(-2) min(-1),硫化物的氧化速度比Fe(II)的溶解速度快15倍(假设硫化物氧化生成的Fe(II)的比例为2:1; k(Fe)= 1.1 x 10(-6)0.2 x 10(-6)摩尔(0.5)l(0.5)m(-2)min(-1))。确定初始溶解硫化物浓度的分数阶是因为反应速率取决于反应性表面位点的可用性。在相对较低的亚铁酸盐与溶解的硫化物比率下,更多的反应性表面位点被硫化物饱和。在许多自然硫化环境中,预计氧化铁与溶解硫化物的比率将低于此实验室研究期间的比率。因此,表面饱和度将对自然界中的反应速率产生重要影响。 (C)2003 Elsevier B.V.保留所有权利。 [参考:58]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号