首页> 外文期刊>Chemphyschem: A European journal of chemical physics and physical chemistry >Avoiding bias effects in NMR experiments for heteronuclear dipole-dipole coupling determinations: Principles and application to organic semiconductor materials
【24h】

Avoiding bias effects in NMR experiments for heteronuclear dipole-dipole coupling determinations: Principles and application to organic semiconductor materials

机译:在NMR实验中避免异核偶极-偶极偶合测定的偏倚效应:原理及其在有机半导体材料中的应用

获取原文
获取原文并翻译 | 示例
           

摘要

Carbon-proton dipole-dipole couplings between bonded atoms represent a popular probe of molecular dynamics in soft materials or biomolecules. Their site-resolved determination, for example, by using the popular DIPSHIFT experiment, can be challenged by spectral overlap with nonbonded carbon atoms. The problem can be solved by using very short cross-polarization (CP) contact times, however, the measured modulation curves then deviate strongly from the theoretically predicted shape, which is caused by the dependence of the CP efficiency on the orientation of the CH vector, leading to an anisotropic magnetization distribution even for isotropic samples. Herein, we present a detailed demonstration and explanation of this problem, as well as providing a solution. We combine DIPSHIFT experiments with the rotor-directed exchange of orientations (RODEO) method, and modifications of it, to redistribute the magnetization and obtain undistorted modulation curves. Our strategy is general in that it can also be applied to other types of experiments for heteronuclear dipole-dipole coupling determinations that rely on dipolar polarization transfer. It is demonstrated with perylene-bisimide-based organic semiconductor materials, as an example, in which measurements of dynamic order parameters reveal correlations of the molecular dynamics with the phase structure and functional properties. Dippy curves! Distortions of ~(13)C-detected dipolar chemical-shift correlation (DIPSHIFT) modulation curves arising from a nonisotropic magnetization distribution after short cross-polarization times are demonstrated and explained by theoretical and experimental approaches. The problem is of general importance and practical solutions as well as an application are presented.
机译:键原子之间的碳-质子偶极-偶极偶合代表了软材料或生物分子中分子动力学的流行探针。例如通过使用流行的DIPSHIFT实验,可以通过与未键合碳原子的光谱重叠来挑战对它们进行位点分辨的测定。该问题可以通过使用非常短的交叉极化(CP)接触时间来解决,但是测得的调制曲线则与理论上预测的形状有很大偏差,这是由于CP效率对CH向量的方向的依赖性所致,即使对于各向同性的样品,也会导致各向异性的磁化分布。在此,我们将对此问题进行详细的演示和解释,并提供解决方案。我们将DIPSHIFT实验与转子定向换向(RODEO)方法结合起来并对其进行修改,以重新分布磁化强度并获得未失真的调制曲线。我们的策略是通用的,因为它也可以应用于其他类型的依赖偶极极化转移的异核偶极-偶极耦合测定实验。以基于per-双酰亚胺的有机半导体材料为例进行了演示,其中动态有序参数的测量揭示了分子动力学与相结构和功能特性的相关性。蘸曲线!理论和实验方法证明并解释了在较短的交叉极化时间后由非各向同性磁化分布引起的〜(13)C检测的偶极化学位移相关(DIPSHIFT)调制曲线的失真。该问题具有普遍意义,并提出了实用的解决方案和应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号