首页> 外文期刊>Chemistry in Australia >Novel photocatalyst: sulfur-doped graphitic carbon nitride
【24h】

Novel photocatalyst: sulfur-doped graphitic carbon nitride

机译:新型光催化剂:硫掺杂石墨氮化碳

获取原文
获取原文并翻译 | 示例
           

摘要

The search for highly efficient photocatalysts has been intensifying worldwide due to their promising applications in, for example, renewable energy and the oxidative degradation of aqueous and atmospheric pollutants. Scientists at the Australian Institute for Bioengineering and Nanotechnology, University of Queensland, together with their collaborators from Institute of Metal Research, Chinese Academy of Sciences, have recently developed novel photocatalysts with excellent photo-oxidation and photo-reduction capacity (Liu G., Niu P., Sun C.H., Smith S.C., Chen Z.G., Lu G.Q., Cheng H.M. J. Am. Chem. Soc., 2010, 132, 11642-8). Their strategy uses sulfur atoms to dope graphitic carbon nitride (C3N_(4-x)S_x). The photoreactivity of C3N_(4-x)S_x for H2 evolution from photoreduction of water is 7.2 and 8.0 times higher than that of pure C3N4 under irradiation with λ > 300 nm and λ > 400 nm, respectively. Moreover, C3N_(4-x)S_x completely oxidises phenol under irradiation with λ > 400 nm, which is impossible for C3N4, even for λ > 300 nm. Ab initio calculations revealed the preferred lattice substitution sites, where S replaces N, and clarified that homogeneous substitution of sulfur in this way, coupled with a concomitant quantum confinement effect, are the chief causes of this remarkable electronic and photoreactive functionality. These results collectively indicate new opportunities for designing advanced photocatalysts for clean energy production and water/air purification.
机译:由于高效光催化剂在可再生能源以及水和大气污染物的氧化降解等方面的广阔应用前景,因此在全球范围内,对它们的研究日益广泛。昆士兰大学澳大利亚生物工程与纳米技术研究所的科学家与中国科学院金属研究所的合作者最近共同开发了具有出色的光氧化和光还原能力的新型光催化剂(Liu G.,Niu P.,Sun CH,Smith SC,Chen ZG,Lu GQ,Cheng HMJ Am.Chem.Soc。,2010,132,11642-8)。他们的策略是使用硫原子掺杂石墨氮化碳(C3N_(4-x)S_x)。在λ> 300 nm和λ> 400 nm的照射下,C3N_(4-x)S_x对水的光还原产生H2的光反应性分别是纯C3N4的7.2和8.0倍。此外,C3N_(4-x)S_x在λ> 400 nm的照射下完全氧化苯酚,这对于C3N4来说是不可能的,即使对于λ> 300 nm也是如此。从头算算得出了首选的晶格取代位点,其中S取代了N,并阐明了以这种方式均匀地取代硫以及伴随的量子限制效应,是导致这种出色的电子和光反应性功能的主要原因。这些结果共同表明了设计用于清洁能源生产和水/空气净化的高级光催化剂的新机会。

著录项

  • 来源
    《Chemistry in Australia》 |2010年第10期|共1页
  • 作者

  • 作者单位
  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号