首页> 外文期刊>Chemphyschem: A European journal of chemical physics and physical chemistry >An Excursion from Normal to Inverted C-C Bonds Shows a Clear Demarcation between Covalent and Charge-Shift C-C Bonds
【24h】

An Excursion from Normal to Inverted C-C Bonds Shows a Clear Demarcation between Covalent and Charge-Shift C-C Bonds

机译:从正常C-C键到反向C-C键的偏移显示共价键和电荷移位C-C键之间的清晰分界

获取原文
获取原文并翻译 | 示例
           

摘要

What is the nature of the C-C bond? Valence bond and electron density computations of 16 C-C bonds show two families of bonds that flesh out as a phase diagram. One family, involving ethane, cyclopropane and so forth, is typified by covalent C-C bonding wherein covalent spin-pairing accounts for most of the bond energy. The second family includes the inverted bridgehead bonds of small propellanes, where the bond is neither covalent nor ionic, but owes its existence to the resonance stabilization between the respective structures; hence a charge-shift (CS) bond. The dual family also emerges from calculated and experimental electron density properties. Covalent C-C bonds are characterized by negative Laplacians of the density, whereas CS-bonds display small or positive Laplacians. The positive Laplacian defines a region suffering from neighbouring repulsive interactions, which is precisely the case in the inverted bonding region. Such regions are rich in kinetic energy, and indeed the energy-density analysis reveals that CS-bonds are richer in kinetic energy than the covalent C-C bonds. The large covalent-ionic resonance energy is precisely the mechanism that lowers the kinetic energy in the bonding region and restores equilibrium bonding. Thus, different degrees of repulsive strain create two bonding families of the same chemical bond made from a single atomic constituent. It is further shown that the idea of repulsive strain is portable and can predict the properties of propellanes of various sizes and different wing substituents. Experimentally (M. Messerschmidt, S. Scheins, L. Bruberth, M. Patzel, G. Szeimies, C. Paulman, P. Luger, Angew. Chem. 2005, 117, 3993-3997; Angew. Chem. Int. Ed. 2005, 44, 3925-3928), the C-C bond families are beautifully represented in [1.1.1]propellane, where the inverted C-C is a CS-bond, while the wings are made from covalent C-C bonds. What other manifestations can we expect from CS-bonds? Answers from experiment have the potential of recharting the mental map of chemical bonding.
机译:C-C键的性质是什么? 16个C-C键的价键和电子密度计算显示了充实的两个键族。一个涉及乙烷,环丙烷等的族以共价C-C键为代表,其中共价自旋对占大部分键能。第二类包括小螺旋桨的倒桥头键,该键既不是共价键也不是离子键,而是由于各自结构之间的共振稳定而存在。因此是电荷转移(CS)键。对偶族也来自计算和实验的电子密度性质。共价C-C键的特征是密度为负的拉普拉斯算子,而CS键为小或正的拉普拉斯算子。正拉普拉斯算子定义了一个遭受相邻排斥相互作用的区域,这恰恰是在反向结合区域中的情况。这样的区域富含动能,实际上,能量密度分析表明,CS键比共价C-C键具有更丰富的动能。大的共价离子共振能正是降低键合区域动能并恢复平衡键合的机理。因此,不同程度的排斥应变会产生由单个原子成分构成的同一化学键的两个键族。进一步表明排斥力的想法是可移植的,并且可以预测各种尺寸和不同机翼取代基的螺旋桨的性质。实验上(M.Messerschmidt,S.Scheins,L.Bubberth,M.Patzel,G.Szeimies,C.Paulman,P.Luger,Angew.Chem.2005,117,3993-3997; Angew.Chem.Int。 2005,44,3925-3928)中,CC键家族在[1.1.1]螺旋桨中得到了很好的体现,其中倒置CC是CS键,而侧翼是由共价CC键制成。我们可以从CS债券中期待什么其他表现?实验得出的答案有可能重新诠释化学键的心理图。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号