首页> 外文期刊>Chemphyschem: A European journal of chemical physics and physical chemistry >On Solids with Liquidlike Properties and the Challenge To Develop New Proton-Conducting Separator Materials for Intermediate-Temperature Fuel Cells
【24h】

On Solids with Liquidlike Properties and the Challenge To Develop New Proton-Conducting Separator Materials for Intermediate-Temperature Fuel Cells

机译:具有液态性质的固体及其对开发用于中温燃料电池的新型质子传导隔板材料的挑战

获取原文
获取原文并翻译 | 示例
           

摘要

In the search for more efficient and cleaner ways to convert energy, fuel cells have attracted increasing interest. Fuel cells utilise the same net chemical reaction as the burning of fuel whether, for example, in a combustion engine or a heating system; but by spacially separating the reactants, they convert chemical energy directly into electrical energy instead of generating heat as an intermediary. A critical part of a fuel cell is the separator material, an electrolyte conducting preferentially one kind of ion but impervious to electrons (and holes). As with a battery, the electrons must instead flow externally where they can be, so to say, harvested by an electrical load. The different types of fuel cells are even named according to the different electrolytes used as separator materials, namely SOFC (solid oxide fuel cell), MCFC (molten carbonate fuel cell), AFC (alkaline fuel cell), PAFC (phosphoric acid fuel cell) and PEMFC (polymer electrolyte membrane fuel cell). During the last decade, research and development activities have mainly focused on PEMFCs and SOFCs, which actually correspond to the fuel cell types operating at the lowest (40 - 90 ℃) and highest temperatures (800 - 1000 ℃). Indeed, in both cases there has been tremendous progress with respect to achieving both performance and long-term stability. While this success was essentially the result of sophisticated engineering efforts making use of available materials, the inherent properties of the materials employed to date seem to inhibit further progress of this promising technology. When Sossina Haile and her team of material scientists at Caltech demonstrated that CsHSO_4, a material new to fuel cell technology although well known as a solid proton conductor, could operate in a laboratory fuel cell, a lot of attention was therefore attracted even outside the community.
机译:在寻找更有效和更清洁的方式来转换能量时,燃料电池引起了越来越多的兴趣。燃料电池利用的净化学反应与燃料的燃烧相同,例如在内燃机或加热系统中;但是通过在空间上分离反应物,它们将化学能直接转化为电能,而不是作为中介产生热量。燃料电池的关键部分是隔板材料,隔板材料优先传导一种离子,但不能透过电子(和空穴)。与电池一样,电子必须从外部流向可以通过电负载收集的地方。甚至根据用作分隔器材料的不同电解质来命名不同类型的燃料电池,即SOFC(固体氧化物燃料电池),MCFC(熔融碳酸盐燃料电池),AFC(碱性燃料电池),PAFC(磷酸燃料电池)和PEMFC(聚合物电解质膜燃料电池)。在过去的十年中,研发活动主要集中在PEMFC和SOFC,它们实际上对应于最低温度(40-90℃)和最高温度(800-1000℃)下运行的燃料电池类型。实际上,在这两种情况下,在实现性能和长期稳定性方面都取得了巨大进步。尽管这种成功本质上是使用可用材料进行复杂工程努力的结果,但迄今为止所用材料的固有特性似乎阻碍了这一有前途的技术的进一步发展。当Sossina Haile和她在加州理工学院的材料科学家团队证明CsHSO_4是燃料电池技术的一种新材料,尽管众所周知,它是一种固体质子导体,它可以在实验室燃料电池中运行,因此,即使在社区外部也引起了很多关注。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号