...
首页> 外文期刊>Wear: an International Journal on the Science and Technology of Friction, Lubrication and Wear >Finite element analysis of stress singularity in partial slip and gross sliding regimes in fretting wear
【24h】

Finite element analysis of stress singularity in partial slip and gross sliding regimes in fretting wear

机译:微动磨损中部分滑移和大滑移区域应力奇异性的有限元分析

获取原文
获取原文并翻译 | 示例

摘要

Fretting is a small oscillatory motion between two contact surfaces, which may cause wear or fatigue damage. Many parameters may affect fretting wear including normal load, applied displacement, material properties, surface roughness of the contact surfaces, frequency, etc. The design of engineering components subjected to fretting wear, such as couplings and splines, jointed structures, is still a challenge to engineers. This is because of the continuous change in the contact surfaces of component during fretting wear cycles. Therefore, a predictive technique that takes into account the wear progress during life cycle is desirable. Analytical solutions of wear problems are very difficult and limited to simple 2D configuration steady-state analysis. In contrast, numerical modelling techniques such as Finite Element Analysis (FEA) can be used for any type of structures in 3D configuration with many complicated details such as large deformation, material non-linearity, changes in geometry and time integration effect. In this article, we use FEA to find whether or not there exists a stress singularity at cylinder on flat contact according to different variables, such as applied displacement, coefficient of friction (COF) and fretting wear cycles. Based on a stress singularity signature method, it is found that stress singularity has close relation with fretting regime. There is no stress singularity neither in partial slip nor gross sliding after one-fourth of a fretting wear cycle for lower COF, but it exits for higher COF, in which condition the contact interface is almost stick. After 20,000 cycles, stress singularity exists in partial slip, while there is no stress singularity for gloss sliding condition, when COF is 0.8. Results reveal that more attention should be paid to the mesh size at contact interface, when the contact condition is under partial slip regime. (C) 2014 Elsevier B.V. All rights reserved.
机译:微动是两个接触面之间的小振荡运动,可能导致磨损或疲劳损坏。许多参数可能会影响微动磨损,包括法向载荷,施加的位移,材料特性,接触表面的表面粗糙度,频率等。承受微动磨损的工程部件(例如联轴器和花键,接合结构)的设计仍然是一个挑战。给工程师。这是因为在微动磨损循环中组件的接触面不断变化。因此,需要一种考虑到生命周期中磨损进度的预测技术。磨损问题的解析解决方案非常困难,并且仅限于简单的2D配置稳态分析。相比之下,诸如有限元分析(FEA)之类的数值建模技术可以用于3D配置中的任何类型的结构,这些结构具有许多复杂的细节,例如大变形,材料非线性,几何形状变化和时间积分效应。在本文中,我们使用FEA根据不同的变量(例如施加的位移,摩擦系数(COF)和微动磨损循环)来查找平面接触时圆柱体上是否存在应力奇异性。基于应力奇异性签名方法,发现应力奇异性与微动状态密切相关。对于较低的COF,在微动磨损周期的四分之一之后,在部分滑移和完全滑移中都没有应力奇异性,但对于较高的COF,应力奇异性不存在,在这种情况下,接触界面几乎会粘住。 20,000次循环后,局部滑移中存在应力奇异性,而当COF为0.8时,在光泽滑动条件下没有应力奇异性。结果表明,当接触条件处于部分滑移状态时,应更加注意接触界面的网格尺寸。 (C)2014 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号