...
首页> 外文期刊>Carbon: An International Journal Sponsored by the American Carbon Society >Modfiication of polyacrylonitrile (PAN) carbon fiber precursor via post-spinning plasticization and stretching in dimethyl formamide (DMF)
【24h】

Modfiication of polyacrylonitrile (PAN) carbon fiber precursor via post-spinning plasticization and stretching in dimethyl formamide (DMF)

机译:聚丙烯腈(PAN)碳纤维前体的后纺增塑和二甲基甲酰胺(DMF)中的拉伸改性

获取原文
获取原文并翻译 | 示例
           

摘要

This study investigates the possibility of using a post-spinning plasticization and stretching process to eliminate suspected property-limiting factors in polyacrylonitrile-based carbon fibers. This process was performed with the intention of removing surface defects (to improve tensile strength), attenuating fiber diameter (to promote more uniform heat treatment), and reducing molecular dipole interactions (to facilitate further molecular orientation). Among the various organic and inorganic solutions tested, treatment using aqueous dimethyl formamide (DMF) offered far and away the best properties and was therefore selected for further testing. Tested individually (as single filaments), fibers exposed to 80% DMF for 10 s gave the highest precursor values of elastic modulus (9.07 GPa) and tensile strength (675 MPa). While fibers treated in 80% DMF gave a 73% improvement in elastic modulus and a 53% improvement in tensil estrength over as-received PAN, limitations in sample preparation and carbonization necessitated a reduction in DMF concentration (to 30%) to allow extraction of individual carbon fibers for tensile testing. Despite this compromise, results for fibers carbonized at 1000 deg C ultimately showed a 32% improvement in carbon fiber elastic modulus and a 14% improvement in carbon fiber tesnile strength over egularly prepared carbon fibers. These results show that, to a certain extent, improvements in PAN precursor properties can translate to corresponding improvements in subsequently produced carbon fibers. Additional characterization using wide angle X-ray scattering (WAXS) and scanning electron microscopy (SEM) suggests that these improvements are due in part to improved lateral order as well as the successful elimination fo surface defects and prevention of skin-core formation.
机译:这项研究调查了使用后纺塑化和拉伸工艺消除聚丙烯腈基碳纤维中可疑的性能限制因素的可能性。进行此过程的目的是消除表面缺陷(提高拉伸强度),减弱纤维直径(促进更均匀的热处理)以及减少分子偶极子相互作用(促进进一步的分子取向)。在所测试的各种有机和无机溶液中,使用二甲基甲酰胺水溶液(DMF)进行处理的效果远远超过其最佳,因此被选作进一步测试。单独测试(作为单丝),暴露于80%DMF的纤维10 s可获得最高的弹性模量(9.07 GPa)和拉伸强度(675 MPa)前体值。尽管用80%DMF处理的纤维与原先的PAN相比,弹性模量提高了73%,拉伸强度提高了53%,但由于样品制备和碳化的局限性,DMF浓度必须降低(至30%)才能提取出单独的碳纤维用于拉伸测试。尽管有这种妥协,但在1000摄氏度下碳化的纤维的结果最终显示,与依法制备的碳纤维相比,碳纤维的弹性模量提高了32%,碳纤维的拉伸强度提高了14%。这些结果表明,在一定程度上,PAN前体性能的改善可以转化为随后生产的碳纤维的相应改善。使用广角X射线散射(WAXS)和扫描电子显微镜(SEM)进行的其他表征表明,这些改进部分归因于改善了的侧向顺序以及成功消除了表面缺陷并防止了皮芯的形成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号