首页> 外文期刊>Water Science and Technology >Degradation of halogenated aliphatic compounds utilizing sequential anaerobic/aerobic treatments
【24h】

Degradation of halogenated aliphatic compounds utilizing sequential anaerobic/aerobic treatments

机译:利用顺序厌氧/好氧处理降解卤代脂肪族化合物

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The objective of this research was to determine if either methanogenic or sulfidogenic reductive dechlorination could survive an alternating anaerobic/aerobic sequence to biologically transform halogenated aliphatic hydrocarbons (HACs), specifically tetrachloroethylene (PCE), trichloroethylene (TCE), cis-1,2 dichloroethylene (cDCE), trans-1,2 dichloroethylene (tDCE), 1,1-dichloroethylene (1,1DCE) and. vinyl chloride (VC). This ability was considered to be a necessary prerequisite for complete-anaerobic/aerobic mineralization of halogenated aliphatic hydrocarbons by a single microbial consortia. Chlorinated solvents, which are among the most common groundwater contaminants, have been partially dechlorinated using single-stage anaerobic environmental treatment strategies. Various types of bacteria typically reductively dechlorinate PCE and TCE to cDCE and VC in an anaerobic environment, including methanogens, sulfidogens, and homoacetogens. The problem' lies in the fact that reductive dechlorination typically leads to an accumulation of daughter compounds (cDCE, VC) which are more toxic than their parent compounds (PCE, TCE). Furthermore, PCE and (to a lesser extent) TCE, are resistant to dechlorination in aerobic environments. In contrast, VC and cDCE are readily oxidized co-metabolically in an aerobic environment by methanotrophic bacteria, and others using oxygenases (e.g. toluene oxidizers). Results from this research showed that both methanogenic and sulfidogenic reductive dechlorination could resume after transient exposures to both oxygen and hydrogen peroxide (H2O2). In fact; for cycles as frequent as 10 days between aerobic treatment cycles, reductive dechlorination was observed to resume at rates at least as rapid as microcosms not exposed to aerobic treatments: [References: 13]
机译:这项研究的目的是确定产甲烷或硫化生成的还原性脱氯是否能在交替的厌氧/好氧序列下存活,以生物转化卤代脂肪烃(HAC),特别是四氯乙烯(PCE),三氯乙烯(TCE),顺式1,2-二氯乙烯(cDCE),反式1,2二氯乙烯(tDCE),1,1-二氯乙烯(1,1DCE)和。氯乙烯(VC)。该能力被认为是单个微生物财团对卤代脂族烃进行完全厌氧/好氧矿化的必要先决条件。氯化溶剂是最常见的地下水污染物之一,已通过单阶段厌氧环境处理策略进行了部分脱氯。在厌氧环境中,各种类型的细菌通常会将PCE和TCE还原性脱氯为cDCE和VC,包括产甲烷菌,硫化物和均乙酸菌。问题在于还原脱氯通常会导致子化合物(cDCE,VC)的积累,其毒性要比其母体化合物(PCE,TCE)高。此外,PCE和(在较小程度上)TCE在有氧环境中具有抗脱氯性。相反,VC和cDCE在好氧环境中容易被甲烷营养细菌和其他使用加氧酶(例如甲苯氧化剂)的代谢物氧化。这项研究的结果表明,在短暂暴露于氧气和过氧化氢(H2O2)中之后,产甲烷和硫化生成的还原性脱氯作用都可以恢复。事实上;对于有氧治疗周期之间长达10天的周期,观察到还原脱氯的恢复速度至少与未接受有氧治疗的微观世界一样快:[参考文献:13]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号