首页> 外文期刊>Proceedings of the ASME Advanced Energy Systems Division >DEFINING A STANDARD MEASURE FOR WHOLE SYSTEM EROI COMBINING ECONOMIC 'TOP-DOWN' AND LCA 'BOTTOM-UP' ACCOUNTING
【24h】

DEFINING A STANDARD MEASURE FOR WHOLE SYSTEM EROI COMBINING ECONOMIC 'TOP-DOWN' AND LCA 'BOTTOM-UP' ACCOUNTING

机译:结合经济“自上而下”和LCA“自下而上”的会计定义确定整个系统投资回报的标准措施

获取原文
获取原文并翻译 | 示例
           

摘要

Business investments rely on creating a whole system of different parts, technologies, field and business operations, management, land, financing and commerce using a network of other services. Using the example of a wind farm development, a typical life cycle assessment (LCA) focuses upon the primary technology inputs and their countable embodied direct impacts. What LCA omits are the direct and indirect impacts of the rest of the business system that operates the primary technology, the labor, commerce and other technology employed. A total environmental assessment (TEA) would include the physical costs to the environment of the labor, commerce and other technology too. Here a simplified "system energy assessment" (SEA) is used to combine a "top-down" method of measuring implied indirect business impacts using econometric methods, with a "bottom-up" method of adding up the identifiable direct impact parts. The top-down technique gives an inclusive but rough measure. The bottom-up technique gives a precise accounting for the directly identifiable individual parts that is highly incomplete. SEA allows these two kinds of measures to be combined for a significantly improved understanding of the whole business system and its impacts, combining the high and low precision measures indentified by each method. The key is exhaustively accounting for energy uses within the natural boundary of a whole business system as a way of calibrating the measure. That allows defining a standardized measure of complex distributed system energy flows and their energy returns on invested energy resources (EROI). The method is demonstrated for a generic business operation. Starting from the easily accountable inputs and outputs, SEA successively uses larger natural system boundaries to discover a way of finding the limiting value of EROI after all parts of the whole are included. Some business choices and a net present value model of cash flow for the 20 year project help illustrate the related financial issues. The business model used shows that the EROI of a generic "Texas Wind Farm" is 31 when accounting for direct and indirect fuels only, but decreases to 4-6 after accounting for the economic energy consumed by all necessary business units and services.
机译:商业投资依赖于使用其他服务网络创建一个由不同部分,技术,现场和业务运营,管理,土地,融资和商业组成的整个系统。以风电场开发为例,典型的生命周期评估(LCA)侧重于主要技术投入及其可数的直接影响。 LCA忽略的是操作主要技术,劳动力,商业和其他技术的业务系统其余部分的直接和间接影响。总体环境评估(TEA)还将包括劳动力,商业和其他技术对环境的实际成本。在这里,简化的“系统能源评估”(SEA)结合了使用计量经济学方法测量隐含间接业务影响的“自上而下”方法和“可自上而下”的方法,将可识别的直接影响部分相加。自上而下的技术提供了一个全面但粗略的度量。自下而上的技术对高度不完整的可直接识别的单个零件给出了精确的解释。 SEA允许将这两种方法结合起来,从而通过将每种方法确定的高和低精度方法结合起来,从而大大提高对整个业务系统及其影响的理解。关键是要在整个业务系统的自然边界内详尽地考虑能源使用情况,以此作为衡量措施的一种方法。这允许定义复杂的分布式系统能量流及其在投资能源(EROI)上的能量回报的标准化度量。该方法已针对一般业务操作进行了演示。从容易负责的输入和输出开始,SEA先后使用更大的自然系统边界来发现在将所有部分都包括在内之后找到EROI极限值的方法。 20年项目的一些业务选择和现金流量的净现值模型有助于说明相关的财务问题。所使用的业务模型显示,仅考虑直接和间接燃料时,通用“德克萨斯风电场”的EROI为31,而考虑所有必要业务部门和服务所消耗的经济能源后,EROI则降至4-6。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号