首页> 外文期刊>VGB PowerTech >Improving automated load flexibility of nuclear power plants with ALFC
【24h】

Improving automated load flexibility of nuclear power plants with ALFC

机译:使用ALFC提高核电厂的自动化负载灵活性

获取原文
获取原文并翻译 | 示例
           

摘要

In several German and Swiss Nuclear Power Plants (NPP) with Pressurised Water Reactor (PWR) the control of the reactor power was and will be improved in order to be able to support the energy transition with increasing volatile renewable energy in the grid by flexible load operation according to the need of the load dispatcher regarding the power system stability. Especially regarding the mentioned German NPPs with a nominal electric power of approximately 1,500 MW, the general objectives are the following automated grid-relevant operation modes (Figure 1): 1. Primary frequency control (1) with load jumps up to -200 MW (asymmetric downwards within 30 seconds and with a duration of max. 15 minutes and back to full load within 30 seconds). In this operation mode the grid frequency is linked directly to the turbine power controller in order to compensate directly the energy misbalance of the grid within 30 seconds. 2. Remote secondary control (2) by the load dispatcher; hereby stochastic load changes with gradients of 30 to 40 MW/min within a power range of ΔPG ≈ 600 MW can be required. In this case the load dispatcher directly governs the target setpoint of the turbine load within the mentioned range (which is limited in the turbine control); whereas the load gradient is set by the reactor operator according to the need of the load dispatcher and the actual possibility of the NPP. The reaction time of the load dispatcher is 15 minutes and typically the NPP gets a new setpoint every 15 minutes according to the needs of the grid and the prices in the electricity stock exchange. 3. "Classic" load following operation (3) via telephone contact with the load dispatcher with gradients up to 40 MW/min within a power range of ΔPG ≈ 1,000 MW. In this case the load dispatcher communicates via telephone with the reactor operator regarding all aspects of the load ramp (gradient, target load) and often including the duration of the part load situation. The reaction time is more than one hour. 4. Generally the primary frequency control can be combined with the other mentioned grid operating modes.
机译:在德国和瑞士的几个带有压水堆(PWR)的核电站(NPP)中,反应堆功率的控制已经并且将得到改善,以便能够通过灵活的负荷增加电网中的挥发性可再生能源来支持能源转换。根据负载分配器有关电力系统稳定性的需要进行操作。特别是对于上述提到的额定功率约为1,500 MW的德国NPP,总的目标是以下与电网相关的自动化运行模式(图1):1.负载跳升至-200 MW的主频率控制(1)(在30秒内向下不对称,持续时间最长为15分钟,并在30秒内恢复满负荷。在此运行模式下,电网频率直接链接到涡轮功率控制器,以便在30秒内直接补偿电网的能量失衡。 2.由负载分配器进行远程辅助控制(2);因此,可能需要在ΔPG≈600 MW功率范围内以30到40 MW / min的梯度随机变化。在这种情况下,负载分配器直接控制上述范围内的涡轮机负载目标设定值(这在涡轮机控制中受到限制);而负荷梯度则由反应堆操作员根据负荷分配器的需要和核电厂的实际可能性来设定。负荷分配器的反应时间为15分钟,通常NPP根据电网的需求和电力交易所的价格每15分钟获得一个新的设定点。 3.“经典”负载跟随操作(3),通过与负载分配器进行电话联系,在ΔPG≈1,000 MW的功率范围内,梯度最高可达40 MW / min。在这种情况下,负荷分配器通过电话与反应堆操作员就负荷斜坡的各个方面(梯度,目标负荷)进行通信,通常包括部分负荷情况的持续时间。反应时间超过一小时。 4.通常,一次频率控制可以与其他提到的电网运行模式结合使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号