首页> 外文期刊>Chemical Physics: A Journal Devoted to Experimental and Theoretical Research Involving Problems of Both a Chemical and Physical Nature >Theoretical study of formic acid: A new look at the origin of the planar Z conformation and C-O rotational barrier
【24h】

Theoretical study of formic acid: A new look at the origin of the planar Z conformation and C-O rotational barrier

机译:甲酸的理论研究:平面Z构型和C-O旋转势垒的起源的新视角

获取原文
获取原文并翻译 | 示例
           

摘要

The E and Z rotamers of formic acid (HCOOH) and its barrier to internal rotation about the C-O bond were computationally explored at the HF/6-311 + G**, B3LYP/cc-pVTZ, and CCSD(T)/cc-pVTZ levels of theory. All calculations yielded similar results consistent with experimental observations. Subsequent analysis of the interaction between formate ion (HCOO-) and proton (H+) within formic acid demonstrated a direct correlation between the changes in fragment interaction energy and the total energy of formic acid upon rotation. To obtain further insights into the interaction, energy decomposition analysis based on the reactive bond orbital (RBO) method was carried out using the 6-311 + G** basis set. The analysis showed the electrostatic effect constitutes a major component that gives rise to the interaction energy variation along the rotation path. Thus, the electrostatic environment of HCOO- can be viewed as the key factor determining the Z ground state and C-O rotational barrier of formic acid. The anisotropic electrostatic environment of formate that favors planar conformations of formic acid may be due to the in-plane distribution of carbonyl lone pairs, and the larger electrostatic attraction in the Z form appears to come from a secondary electrostatic interaction between the proton and the distal oxygen. At the rotational transition state, the O-H bond was not exactly perpendicular to the molecular plane, but slightly tilted toward the E side, which can also be explained by the electrostatic hypothesis. Charge-transfer stabilization was smallest in the Z conformation, but it gradually increased upon rotation to a maximum at the E conformation. Therefore, charge - transfer does not explain the geometry of formic acid. The important role of the electrostatic effect was also observed in in-plane rotation of the O-H bond. (C) 2008 Elsevier B.V. All rights reserved.
机译:在HF / 6-311 + G **,B3LYP / cc-pVTZ和CCSD(T)/ cc-上通过计算探索了甲酸(HCOOH)的E和Z旋转异构体及其绕CO键内部旋转的障碍。 pVTZ理论水平。所有计算得出的结果与实验观察结果一致。随后分析甲酸中甲酸离子(HCOO-)与质子(H +)之间的相互作用,证明了旋转时碎片相互作用能的变化与甲酸的总能之间存在直接关系。为了进一步了解相互作用,使用了6-311 + G **基集进行了基于反应性键轨道(RBO)方法的能量分解分析。分析表明,静电效应是导致沿旋转路径相互作用的能量变化的主要因素。因此,可以将HCOO-的静电环境视为决定甲酸Z基态和C-O旋转势垒的关键因素。甲酸的各向异性静电环境有利于甲酸的平面构型,可能是由于羰基孤对的面内分布所致,Z形中较大的静电引力似乎来自质子与末端之间的二次静电相互作用。氧。在旋转跃迁状态下,O-H键不完全垂直于分子平面,而是稍微向E侧倾斜,这也可以通过静电假设来解释。电荷转移稳定化在Z构型中最小,但在旋转时逐渐增加,在E构型中最大。因此,电荷转移不能解释甲酸的几何形状。在O-H键的面内旋转中也观察到了静电效应的重要作用。 (C)2008 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号