...
首页> 外文期刊>Surface Engineering >Effect of pulsed plasma processing on controlling nanostructure and properties of thin film/coatings
【24h】

Effect of pulsed plasma processing on controlling nanostructure and properties of thin film/coatings

机译:脉冲等离子体处理对控制薄膜/涂层纳米结构和性能的影响

获取原文
获取原文并翻译 | 示例

摘要

The benefits of pulsed plasma processing, including pulsing both cathode and substrate in physical vapour deposition (PVD) processes (magnetron sputtering and cathodic arc evaporation (CAE)) and the pulsed plasma enhanced chemical vapour deposition (P-PECVD) process were demonstrated by correlating the pulsed plasma process parameters, microstructure and properties. Five coating systems were developed for structural, electronic, functional and tribological applications. These are: pulsed reactive magnetron sputtering of TiO thin films; alumina deposition with pulsed plasma in closed field unbalanced magnetron sputtering; deposition of thin film silicon using P-PECVD; high energy pulsed bias assisted CAE of Cr - N graded coatings on 7075-T6 Al substrates; and sputter deposition of nickel anode on protonic BaCe_(0.9)Y_(0.1)O_(3-alpha) electrolyte under pulsed dc biasing of substrate. Pulsed plasma was found to change particle energies and plasma composition in both PVD and CVD processes. Through controlled ion bombardment (ion energies and relative abundances of plasma species) by varying pulse frequency, pulse duration and bias voltage, film growth and therefore film properties can be tailored. The films became denser and nanostructured. The interface structure was graded, allowing superior adhesion. Better film performance (e.g. wear resistance, fracture toughness and efficiencies of solar cells and fuel cells) was achieved because of the modified film microstructure and architecture. These results clearly indicate the significant effects of the plasma species and their energies on modification of both the structure and properties of thin films. In several of these examples, the properties could not have been achieved in continuous dc magnetron sputtering.
机译:通过相关性证明了脉冲等离子体处理的好处,包括在物理气相沉积(PVD)过程(磁控溅射和阴极电弧蒸发(CAE))中同时对阴极和衬底进行脉冲化以及脉冲等离子体增强化学气相沉积(P-PECVD)过程。脉冲等离子体工艺参数,显微组织和性能。针对结构,电子,功能和摩擦学应用开发了五种涂层系统。它们是:TiO薄膜的脉冲反应磁控溅射;以及在封闭场不平衡磁控溅射中用脉冲等离子体沉积氧化铝;使用P-PECVD沉积薄膜硅; 7075-T6 Al基底上的Cr-N梯度涂层的高能脉冲偏压辅助CAE;在衬底的脉冲直流偏压下,镍阳极在质子BaCe_(0.9)Y_(0.1)O_(3-α)电解质上的溅射沉积。发现脉冲等离子体在PVD和CVD工艺中都会改变粒子能量和等离子体组成。通过控制脉冲轰击(离子能量和等离子体种类的相对丰度),通过改变脉冲频率,脉冲持续时间和偏置电压,可以调整薄膜的生长,从而调整薄膜的性能。薄膜变得更致密且具有纳米结构。界面结构经过分级,具有出色的附着力。由于改进的薄膜微观结构和结构,获得了更好的薄膜性能(例如,耐磨性,断裂韧性和太阳能电池和燃料电池的效率)。这些结果清楚地表明,等离子体种类及其能量对薄膜结构和性能的改变具有重大影响。在这些例子中的一些例子中,在连续直流磁控管溅射中不能获得这些性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号