...
【24h】

Determining the role of surfaces and interfaces in the powder metallurgy processing of aluminum alloy powders

机译:确定表面和界面在铝合金粉末的粉末冶金加工中的作用

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The current options for solid-state consolidation processing of powder-based advanced aluminum alloys have been very limited and complicated, resulting in a segregation of the applications primarily to the aerospace segment. Throughout any consolidation sequence for aluminum powders, the oxide and/or hydroxide films on the typical powder surfaces can interfere with densification and interparticle bonding. In fact, the consolidation sequence for many low-strength aluminum alloy powder metallurgy parts involves transient liquid-phase sintering to massively disrupt the powder surfaces, producing improved bonding but introducing a coarsened resolidification microstructure. Although preventing aluminum oxide formation is nearly impossible during aluminum powder production, the gas atomization reaction synthesis (GARS) method - an advanced powder production technique - can modify the oxide coating and enable improved consolidation processing. This report compares the effects of the GARS process and other representative atomization processes on the surface structure and properties of aluminum powders and on their ability to sinter. The powders were characterized with transmission electron microscopy, scanning electron microscopy, Auger electron spectroscopy, quadrapole mass spectroscopy and with a new ultrasonic method for in situ sensing of the evolution of sintering. In general, a marked reduction in the surface film thickness and in the level of chemisorbed moisture and moisture-borne impurities was observed in the GARS powders. This change in powder surface characteristics also was effective in promoting sintering processes in the GARS powders, as monitored by our new technique. An initial direct comparison of explosivity for the different types of aluminum powder revealed that the GARS powder also had a reduced hazard level. All of these findings indicate that the GARS approach to aluminum powder production may enable mass-produced lightweight powder metallurgy parts from advanced aluminum alloys with simple consolidation processing techniques. Copyright (C) 2001 John Wiley & Sons, Ltd. [References: 16]
机译:粉末基高级铝合金的固态固结处理的当前选择非常有限且复杂,导致主要将应用隔离到航空领域。在铝粉的所有固结过程中,典型粉末表面的氧化物和/或氢氧化物膜都会干扰致密化和颗粒间键合。实际上,许多低强度铝合金粉末冶金零件的固结顺序涉及瞬时液相烧结,以大幅度破坏粉末表面,产生改善的结合力,但引入了粗糙的再凝固微观结构。尽管在铝粉生产过程中几乎不可能防止氧化铝的形成,但是气体雾化反应合成(GARS)方法-一种先进的粉体生产技术-可以改变氧化物涂层并改善固结工艺。该报告比较了GARS工艺和其他代表性雾化工艺对铝粉表面结构和性能以及其烧结能力的影响。通过透射电子显微镜,扫描电子显微镜,俄歇电子能谱,四极质谱法和新的超声方法对粉末进行了表征,以用于原位感测烧结的演变。通常,在GARS粉末中观察到表面膜厚度以及化学吸附的水分和水分携带的杂质水平显着降低。正如我们的新技术所监测的那样,粉末表面特性的这种变化也有效地促进了GARS粉末的烧结过程。最初对不同类型铝粉的爆炸性进行了直接比较,发现GARS粉也降低了危险等级。所有这些发现表明,采用GARS进行铝粉生产的方法可以通过简单的固结加工技术使高级铝合金大量生产轻质粉末冶金零件。版权所有(C)2001 John Wiley&Sons,Ltd. [引用:16]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号