【24h】

Perennial problems and promising prospects in the kinetic analysis of nonisothermal rate data

机译:非等温速率数据动力学分析中的常年问题和有前途的前景

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

A critical examination is made of the mathematical principles that are used for the kinetic interpretation of nonisothermal thermoanalytical rate measurement by a representative approximate method, the widely applied Coats-Redfern (CR) equation. It is concluded that the dominant feature in the identification of that isothermal kinetic equation, which most satisfactorily expresses the rate characteristics, is the (effective) exponent in the set of equations comparatively considered. Consequently, the form of the CR equation possesses only limited ability to distinguish between 'fits' to alternative kinetic models. This is entirely consistent with literature conclusions expressing the view that data from a single nonisothermal experiment is insufficient to identify the three kinetic parameters: kinetic model, g(alpha) = kt, and both Arrhenius terms, A and E. An usual first step in kinetic analysis by the CR (and other related) equations is to incorporate the kinetic model (g(alpha) = kt) into the expression used to calculate A and E. Because the rate equation (effective) exponent is a dominant and, without supporting observations, is an unknown parameter, this introduces the well-known ambiguity that alternative kinetic parameters are obtained by the uncritical use of this method. Accordingly, the following replacement calculation sequence is recommended as being more trustworthy. At least two. preferably several. nonisothermal experiments are undertaken, each at a different (usually constant) rate of temperature increase. For a comprehensive range of constant increments of reaction, Deltaalpha(i), the different rates (dalpha/dt) at different reaction temperatures, T-i. are determined from the several experiments and the activation energy, E-i, for each successive reaction interval can be calculated. The constancy, or otherwise, of E-i with alpha(i) throughout the reaction is thus established. From these data, the rate constant for each alpha(i) value can be extrapolated to a selected representative temperature T-R, perhaps at the mid-point of a reaction (alpha = 0.5). From these data a pseudoisothermal alpha-t (T-R constant) curve can be constructed, suitable for analysis by the usual methods. Various advantages from this approach are perceived. The unfortunate role of the (effective) kinetic model exponent in combination with the logarithmic form of the CR equation in analyzing the data, which inhibits recognition of the kinetic model, is avoided. The laborious calculations will not be a problem for modem high-speed computers, unlike the situation existing when the CR equation was first introduced in 1964. Suitable programs may be used to maximize the accuracy of the method, through the use of several nonisothermal experiments and small Deltaalpha increments in the analysis. Kinetic comparisons can be extended to a wider range of kinetic models than the limited selection that often restrict the possibilities for nonisothermal rate data interpretation by the most widely used approximate methods. (C) 2003 Elsevier B.V. All rights reserved. [References: 34]
机译:严格审查了数学原理,该数学原理通过代表性的近似方法,广泛应用的Coats-Redfern(CR)方程用于非等温热分析速率测量的动力学解释。结论是,在等温动力学方程式识别中最能令人满意地表达速率特性的主要特征是在比较考虑的方程组中的(有效)指数。因此,CR方程的形式仅具有有限的能力来区分替代动力学模型的“拟合”。这与表达以下观点的文献结论完全一致:一个非等温实验的数据不足以识别三个动力学参数:动力学模型g(α)= kt,以及两个Arrhenius项A和E。这是通常的第一步CR(及其他相关)方程的动力学分析是将动力学模型(g(alpha)= kt)合并到用于计算A和E的表达式中。因为速率方程(有效)指数占主导地位,并且不支持由于观测值是未知的参数,因此引入了众所周知的歧义,即通过非严格使用此方法可获得替代动力学参数。因此,建议以下替换计算顺序更可信。至少两个。最好是几个。进行非等温实验,每个实验均以不同的(通常是恒定的)温度升高速率进行。对于恒定范围的增量增量Deltaalpha(i),在不同的反应温度T-i下,不同的速率(dalpha / dt)。可以从几个实验中确定,并可以计算出每个连续反应间隔的活化能E-i。因此建立了整个反应中E-i与α(i)的恒定性。根据这些数据,可以将每个alpha(i)值的速率常数外推到选定的代表温度T-R,也许是在反应的中点(alpha = 0.5)。根据这些数据,可以构建拟等温的α-t(T-R常数)曲线,适用于通过常规方法进行分析。人们认识到这种方法的各种优点。避免了(有效的)动力学模型指数与CR方程的对数形式在分析数据时的不利作用,这抑制了动力学模型的识别。与1964年首次引入CR方程时的情况不同,对于现代高速计算机而言,费力的计算不会成为问题。通过使用多个非等温实验和适当的程序,可以使用合适的程序来最大化该方法的准确性。分析中的Deltaalpha小增量。与有限的选择相比,动力学比较可以扩展到更广泛的动力学模型范围,而有限的选择通常会限制使用最广泛使用的近似方法进行非等温速率数据解释的可能性。 (C)2003 Elsevier B.V.保留所有权利。 [参考:34]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号