首页> 外文期刊>Theoretical and Computational Fluid Dynamics >Parallel data-driven decomposition algorithm for large-scale datasets: with application to transitional boundary layers
【24h】

Parallel data-driven decomposition algorithm for large-scale datasets: with application to transitional boundary layers

机译:大规模数据集的并行数据驱动分解算法:应用于过渡边界层

获取原文
获取原文并翻译 | 示例
           

摘要

Many fluid flows of engineering interest, though very complex in appearance, can be approximated by low-order models governed by a few modes, able to capture the dominant behavior (dynamics) of the system. This feature has fueled the development of various methodologies aimed at extracting dominant coherent structures from the flow. Some of the more general techniques are based on data-driven decompositions, most of which rely on performing a singular value decomposition (SVD) on a formulated snapshot (data) matrix. The amount of experimentally or numerically generated data expands as more detailed experimental measurements and increased computational resources become readily available. Consequently, the data matrix to be processed will consist of far more rows than columns, resulting in a so-called tall-and-skinny (TS) matrix. Ultimately, the SVD of such a TS data matrix can no longer be performed on a single processor, and parallel algorithms are necessary. The present study employs the parallel TSQR algorithm of (Demmel et al. in SIAM J Sci Comput 34(1):206-239, 2012), which is further used as a basis of the underlying parallel SVD. This algorithm is shown to scale well on machines with a large number of processors and, therefore, allows the decomposition of very large datasets. In addition, the simplicity of its implementation and the minimum required communication makes it suitable for integration in existing numerical solvers and data decomposition techniques. Examples that demonstrate the capabilities of highly parallel data decomposition algorithms include transitional processes in compressible boundary layers without and with induced flow separation.
机译:工程感兴趣的许多流体流,尽管外观上非常复杂,但可以通过由几种模式控制的低阶模型来近似,这些模型能够捕获系统的主要行为(动力学)。此功能推动了旨在从流中提取主要相干结构的各种方法的发展。一些更通用的技术基于数据驱动的分解,其中大多数依赖于对公式化的快照(数据)矩阵执行奇异值分解(SVD)。随着更详细的实验测量和增加的计算资源变得容易获得,以实验或数字方式生成的数据量不断扩大。因此,要处理的数据矩阵将包含比行多得多的行,从而形成所谓的“瘦身”(TS)矩阵。最终,这种TS数据矩阵的SVD不再可以在单个处理器上执行,并且并行算法是必需的。本研究采用了并行TSQR算法(Demmel et al。in SIAM J Sci Comput 34(1):206-239,2012),该算法进一步用作底层并行SVD的基础。该算法在具有大量处理器的机器上可以很好地扩展,因此可以分解非常大的数据集。此外,其实现的简便性和所需的最少通信使其适合集成到现有的数值求解器和数据分解技术中。演示高度并行数据分解算法功能的示例包括可压缩边界层中的过渡过程,没有或没有引起流分离。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号