首页> 外文期刊>Toxicological sciences: An official journal of the Society of Toxicology >A PGC-1 alpha-Mediated Transcriptional Network Maintains Mitochondrial Redox and Bioenergetic Homeostasis against Doxorubicin-Induced Toxicity in Human Cardiomyocytes: Implementation of TT21C
【24h】

A PGC-1 alpha-Mediated Transcriptional Network Maintains Mitochondrial Redox and Bioenergetic Homeostasis against Doxorubicin-Induced Toxicity in Human Cardiomyocytes: Implementation of TT21C

机译:一个PGC-1 alpha介导的转录网络保持线粒体氧化还原和生物能稳态对抗阿霉素诱导的人类心肌细胞毒性:TT21C的实现。

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Chemical toxicity testing is fast moving in a direction that relies increasingly on cell-based in vitro assays anchored on toxicity pathways according to the toxicity testing in the 21st century vision. Identifying points of departure (POD) via these assays and revealing their mechanistic underpinnings via computational modeling of the relevant pathways are critical and challenging steps. Here we used doxorubicin (DOX) as a prototype chemical to study mitochondrial toxicity in human AC16 cells. Mitochondrial toxicity has been linked to cardiovascular risk of DOX, which has limited its clinical use as an antitumor drug. Our in vitro study revealed a well-defined POD concentration of DOX below which adaptive induction of proliferator-activated receptor-gamma coactivator-1 alpha (PGC-1 alpha) -mediated mitochondrial genes, including NRF-1, MnSOD, UCP2, and COX1, concurred with negligible changes in mitochondrial superoxide and cytotoxicity. At higher DOX concentrations adversity became significant with elevated superoxide and suppressed ATP levels. A computational model was formulated to simulate the PGC-1 alpha-mediated transcriptional network comprising multiple negative feedback loops that underlie redox and bioenergetics homeostasis in the mitochondrion. The model recapitulated the transition phase from adaptive to adverse responses, supporting the notion that saturated induction of PGC-1 alpha-mediated gene network underpins POD. The model further predicts (follow-up experiments verified) that silencing PGC-1 alpha compromises the adaptive function of the transcriptional network, leading to disruption of mitochondria and cytotoxicity at lower DOX concentrations. In summary, our study demonstrates that combining pathway-focused in vitro assays and computational simulation of relevant biochemical network is synergistic for understanding dose-response behaviors in the low-dose region and identifying POD.
机译:根据21世纪愿景中的毒性测试,化学毒性测试正在朝着越来越依赖于基于细胞的体外测定的方向快速发展,该体外测定锚定在毒性途径上。通过这些检测方法确定出发点(POD)并通过相关途径的计算模型揭示其机理基础是关键且具有挑战性的步骤。在这里,我们使用阿霉素(DOX)作为原型化学品来研究线粒体在人AC16细胞中的毒性。线粒体毒性已经与DOX的心血管风险相关联,这限制了其作为抗肿瘤药物的临床用途。我们的体外研究揭示了DOX的定义明确的POD浓度,低于POD浓度,可自适应诱导增殖物激活的受体-γ共激活因子1 alpha(PGC-1 alpha)介导的线粒体基因,包括NRF-1,MnSOD,UCP2和COX1 ,线粒体超氧化物和细胞毒性的变化可忽略不计。在较高的DOX浓度下,超氧化物含量升高和ATP含量降低,逆境变得很明显。制定了计算模型来模拟PGC-1α介导的转录网络,该网络包含多个负反馈环,这些负反馈环是线粒体中氧化还原和生物能稳态的基础。该模型概括了从适应性反应到不良反应的过渡阶段,支持了PGC-1α介导的基因网络的饱和诱导支撑POD的观点。该模型进一步预测(后续实验已验证),沉默PGC-1 alpha会损害转录网络的适应性功能,从而导致线粒体的破坏和低DOX浓度下的细胞毒性。总而言之,我们的研究表明,结合以途径为中心的体外测定法和相关生化网络的计算模拟相结合,可以协同理解低剂量区域的剂量反应行为并鉴定POD。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号