首页> 外文期刊>Theoretical and Applied Genetics: International Journal of Breeding Research and Cell Genetics >Bridging the genotyping gap: using genotyping by sequencing (GBS) to add high-density SNP markers and new value to traditional bi-parental mapping and breeding populations.
【24h】

Bridging the genotyping gap: using genotyping by sequencing (GBS) to add high-density SNP markers and new value to traditional bi-parental mapping and breeding populations.

机译:弥合基因分型差距:利用测序基因分型(GBS)为传统的双亲作图和育种种群增加高密度SNP标记和新价值。

获取原文
获取原文并翻译 | 示例
       

摘要

Genotyping by sequencing (GBS) is the latest application of next-generation sequencing protocols for the purposes of discovering and genotyping SNPs in a variety of crop species and populations. Unlike other high-density genotyping technologies which have mainly been applied to general interest "reference" genomes, the low cost of GBS makes it an attractive means of saturating mapping and breeding populations with a high density of SNP markers. One barrier to the widespread use of GBS has been the difficulty of the bioinformatics analysis as the approach is accompanied by a high number of erroneous SNP calls which are not easily diagnosed or corrected. In this study, we use a 384-plex GBS protocol to add 30,984 markers to an indica (IR64) x japonica (Azucena) mapping population consisting of 176 recombinant inbred lines of rice (Oryza sativa) and we release our imputation and error correction pipeline to address initial GBS data sparsity and error, and streamline the process of adding SNPs to RIL populations. Using the final imputed and corrected dataset of 30,984 markers, we were able to map recombination hot and cold spots and regions of segregation distortion across the genome with a high degree of accuracy, thus identifying regions of the genome containing putative sterility loci. We mapped QTL for leaf width and aluminum tolerance, and were able to identify additional QTL for both phenotypes when using the full set of 30,984 SNPs that were not identified using a subset of only 1,464 SNPs, including a previously unreported QTL for aluminum tolerance located directly within a recombination hotspot on chromosome 1. These results suggest that adding a high density of SNP markers to a mapping or breeding population through GBS has a great value for numerous applications in rice breeding and genetics research.
机译:测序基因分型(GBS)是下一代测序协议的最新应用,目的是在多种农作物物种和种群中发现SNP和对其进行基因分型。与主要应用于普遍关注的“参考”基因组的其他高密度基因分型技术不同,GBS的低成本使其成为具有高密度SNP标记的饱和作图和育种种群的诱人手段。 GBS广泛使用的一个障碍是生物信息学分析的困难,因为该方法伴随着大量错误的SNP调用,这些错误不易诊断或纠正。在这项研究中,我们使用384-plex GBS协议向包含176个水稻重组自交系的in稻(IR64)x粳稻(Azucena)作图群体添加30,984个标记,并发布了插补和纠错流程以解决最初的GBS数据稀疏性和错误,并简化将SNP添加到RIL种群的过程。使用最终的估算和校正的30984个标记数据集,我们能够在整个基因组中以较高的准确度绘制重组热点和冷点以及偏析变形区域,从而鉴定出包含推定不育基因座的基因组区域。我们对叶宽和铝耐性的QTL进行了映射,当使用全套30,984个SNP时,能够为这两种表型确定其他QTL,而仅使用1,464个SNP的子集就无法识别,包括先前未报道的直接对铝耐性定位的QTL这些结果表明,通过GBS向定位或育种群体中添加高密度的SNP标记对于水稻育种和遗传学研究中的许多应用具有重要价值。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号