首页> 外文期刊>Theoretical and Applied Genetics: International Journal of Breeding Research and Cell Genetics >Genetic structure and relationships within and between cultivated and wild sorghum (Sorghum bicolor (L.) Moench) in Kenya as revealed by microsatellite markers
【24h】

Genetic structure and relationships within and between cultivated and wild sorghum (Sorghum bicolor (L.) Moench) in Kenya as revealed by microsatellite markers

机译:通过微卫星标记揭示的肯尼亚栽培高粱和野生高粱(高粱)的遗传结构及其之间的关系

获取原文
获取原文并翻译 | 示例
       

摘要

Understanding the extent and partitioning of diversity within and among crop landraces and their wild/weedy relatives constitutes the first step in conserving and unlocking their genetic potential. This study aimed to characterize the genetic structure and relationships within and between cultivated and wild sorghum at country scale in Kenya, and to elucidate some of the underlying evolutionary mechanisms. We analyzed at total of 439 individuals comprising 329 cultivated and 110 wild sorghums using 24 microsatellite markers. We observed a total of 295 alleles across all loci and individuals, with 257 different alleles being detected in the cultivated sorghum gene pool and 238 alleles in the wild sorghum gene pool. We found that the wild sorghum gene pool harbored significantly more genetic diversity than its domesticated counterpart, a reflection that domestication of sorghum was accompanied by a genetic bottleneck. Overall, our study found close genetic proximity between cultivated sorghum and its wild progenitor, with the extent of crop-wild divergence varying among cultivation regions. The observed genetic proximity may have arisen primarily due to historical and/or contemporary gene flow between the two congeners, with differences in farmers' practices explaining inter-regional gene flow differences. This suggests that deployment of transgenic sorghum in Kenya may lead to escape of transgenes into wild-weedy sorghum relatives. In both cultivated and wild sorghum, genetic diversity was found to be structured more along geographical level than agro-climatic level. This indicated that gene flow and genetic drift contributed to shaping the contemporary genetic structure in the two congeners. Spatial autocorrelation analysis revealed a strong spatial genetic structure in both cultivated and wild sorghums at the country scale, which could be explained by medium- to long-distance seed movement.
机译:了解农作物地方品种及其野生/杂草近缘种内部及其之间的多样性的程度和划分,是保护和释放其遗传潜力的第一步。这项研究旨在表征肯尼亚国家规模内人工栽培和野生高粱的遗传结构及其之间的关系,并阐明一些潜在的进化机制。我们使用24个微卫星标记分析了总共439个个体,包括329个栽培高粱和110个野生高粱。我们在所有基因座和个体中共观察到295个等位基因,其中在培养的高粱基因库中检测到257个不同的等位基因,而在野生高粱基因库中检测到238个等位基因。我们发现野生高粱基因库比其驯化对应物具有更多的遗传多样性,这反映了高粱的驯化伴随着遗传瓶颈。总体而言,我们的研究发现,栽培高粱与其野生祖先之间的遗传亲缘关系密切,不同种植区域之间的农作物与野生物种分化程度不同。观察到的遗传接近性可能主要是由于两个同类物之间的历史和/或当代基因流动,农民的行为差异解释了区域间基因流动的差异。这表明在肯尼亚部署转基因高粱可能导致转基因逃逸到野草高粱亲戚中。在栽培高粱和野生高粱中,发现遗传多样性的构成更多地沿地理层次而非农业气候层次构成。这表明基因流动和遗传漂移有助于塑造这两个同类基因的当代遗传结构。空间自相关分析表明,在国家范围内,高粱和野生高粱都具有很强的空间遗传结构,这可以用中长距离种子运动来解释。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号