首页> 外文期刊>Tissue engineering, Part A >Nanocomposite scaffold for chondrocyte growth and cartilage tissue engineering: Effects of carbon nanotube surface functionalization
【24h】

Nanocomposite scaffold for chondrocyte growth and cartilage tissue engineering: Effects of carbon nanotube surface functionalization

机译:用于软骨细胞生长和软骨组织工程的纳米复合支架:碳纳米管表面功能化的影响

获取原文
获取原文并翻译 | 示例
           

摘要

The goal of this study was to assess the long-term biocompatibility of single-wall carbon nanotubes (SWNTs) for tissue engineering of articular cartilage. We hypothesized that SWNT nanocomposite scaffolds in cartilage tissue engineering can provide an improved molecular-sized substrate for stimulation of chondrocyte growth, as well as structural reinforcement of the scaffold's mechanical properties. The effect of SWNT surface functionalization (-COOH or -PEG) on chondrocyte viability and biochemical matrix deposition was examined in two-dimensional cultures, in three-dimensional (3D) pellet cultures, and in a 3D nanocomposite scaffold consisting of hydrogels+SWNTs. Outcome measures included cell viability, histological and SEM evaluation, GAG biochemical content, compressive and tensile biomechanical properties, and gene expression quantification, including extracellular matrix (ECM) markers aggrecan (Agc), collagen-1 (Col1a1), collagen-2 (Col2a1), collagen-10 (Col10a1), surface adhesion proteins fibronectin (Fn), CD44 antigen (CD44), and tumor marker (Tp53). Our findings indicate that chondrocytes tolerate functionalized SWNTs well, with minimal toxicity of cells in 3D culture systems (pellet and nanocomposite constructs). Both SWNT-PEG and SWNT-COOH groups increased the GAG content in nanocomposites relative to control. The compressive biomechanical properties of cell-laden SWNT-COOH nanocomposites were significantly elevated relative to control. Increases in the tensile modulus and ultimate stress were observed, indicative of a tensile reinforcement of the nanocomposite scaffolds. Surface coating of SWNTs with -COOH also resulted in increased Col2a1 and Fn gene expression throughout the culture in nanocomposite constructs, indicative of increased chondrocyte metabolic activity. In contrast, surface coating of SWNTs with a neutral -PEG moiety had no significant effect on Col2a1 or Fn gene expression, suggesting that the charged nature of the -COOH surface functionalization may promote ECM expression in this culture system. The results of this study indicate that SWNTs exhibit a unique potential for cartilage tissue engineering, where functionalization with bioactive molecules may provide an improved substrate for stimulation of cellular growth and repair.
机译:这项研究的目的是评估单壁碳纳米管(SWNTs)在关节软骨组织工程中的长期生物相容性。我们假设软骨组织工程中的SWNT纳米复合材料支架可以提供一种分子大小更大的底物,用于刺激软骨细胞的生长以及支架机械性能的结构增强。在二维培养物中,在三维(3D)颗粒培养物中以及在由水凝胶+ SWNT组成的3D纳米复合材料支架中检查了SWNT表面功能化(-COOH或-PEG)对软骨细胞活力和生化基质沉积的影响。结果指标包括细胞活力,组织学和SEM评估,GAG生化含量,压缩和拉伸生物力学特性以及基因表达定量,包括细胞外基质(ECM)标记蛋白聚糖(Agc),胶原蛋白1(Col1a1),胶原蛋白2(Col2a1) ),胶原蛋白10(Col10a1),表面粘附蛋白纤连蛋白(Fn),CD44抗原(CD44)和肿瘤标志物(Tp53)。我们的发现表明,软骨细胞能够很好地耐受功能性SWNT,在3D培养系统(颗粒和纳米复合结构)中细胞的毒性极小。相对于对照,SWNT-PEG和SWNT-COOH基团均增加了纳米复合材料中的GAG含量。相对于对照,充满细胞的SWNT-COOH纳米复合材料的压缩生物力学性能显着提高。观察到拉伸模量和极限应力的增加,表明纳米复合支架的拉伸增强。用-COOH对SWNTs进行表面覆盖还导致整个纳米复合构建体培养物中Col2a1和Fn基因表达的增加,表明软骨细胞的代谢活性增加。相反,具有中性-PEG部分的SWNT表面涂层对Col2a1或Fn基因表达没有显着影响,表明-COOH表面功能化的带电性质可能促进该培养系统中ECM的表达。这项研究的结果表明,SWNTs在软骨组织工程中具有独特的潜力,其中具有生物活性分子的功能化可以为刺激细胞生长和修复提供改良的基质。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号