...
首页> 外文期刊>Tissue engineering >Salt fusion: an approach to improve pore interconnectivity within tissue engineering scaffolds.
【24h】

Salt fusion: an approach to improve pore interconnectivity within tissue engineering scaffolds.

机译:盐融合:一种改善组织工程支架内孔互连的方法。

获取原文
获取原文并翻译 | 示例
           

摘要

Macroporous scaffolds composed of biodegradable polymers have found extensive use as three-dimensional substrates either for in vitro cell seeding followed by transplantation, or as conductive substrates for direct implantation in vivo. Methods abound for creation of macroporous scaffolds for tissue engineering, and common methods typically employ a solid porogen within a three-dimensional polymer matrix to create a well-defined pore size, pore structure, and total scaffold porosity. This study describes an approach to impart improved pore interconnectivity to polymer scaffolds for tissue engineering by partially fusing the solid porogen together prior to creation of a continuous polymer matrix. Three dimensional, porous scaffolds of the copolymer 85:15 poly(lactide-co-glycolide) were fabricated via either a solvent casting/particulate leaching process, or a gas foaming/particulate leaching process. Prior to creation of a continuous polymer matrix the NaCl crystals, which serve as the solid porogen, are partially fused via treatment in 95% humidity. Scanning electron micrographs clearly display fused salt crystals and an enhancement in pore interconnectivity in the salt fused scaffolds prepared via both solvent casting and gas foaming, and the extent of pore interconnectivity is enhanced with longer treatment times. Fusion of salt crystal for 24 h increased the radius of curvature of salt crystals, and led to a twofold increase in the compressive modulus of solvent cast scaffolds (total porosity of 97 +/- 1%). Fusion of NaCl crystals prior to gas foaming resulted in a decrease in scaffold compressive modulus from 277 +/- 60k Pa to 187 +/- 30k Pa (total porosity of 94 +/- 1%). The resulting highly interconnected scaffolds have implications for facilitated cell migration, abundant cell-cell interaction, and potentially improved neural and vascular growth within tissue engineering scaffolds.
机译:已经发现由可生物降解的聚合物组成的大孔支架广泛用作三维底物,用于体外细胞接种然后移植,或者用作导电底物,用于体内直接植入。产生用于组织工程的大孔支架的方法很多,并且通常的方法通常在三维聚合物基质内采用固体致孔剂以产生明确定义的孔径,孔结构和总支架孔隙率。这项研究描述了一种方法,该方法可通过在创建连续聚合物基质之前将固体致孔剂部分融合在一起,从而为组织工程用聚合物支架提供改善的孔互连性。共聚物85:15聚丙交酯-共-乙交酯的三维多孔支架是通过溶剂浇铸/微粒浸出工艺或气体发泡/微粒浸出工艺制造的。在创建连续的聚合物基质之前,通过在95%的湿度下处理将用作固体致孔剂的NaCl晶体部分熔融。扫描电子显微照片清楚地显示了熔盐晶体和通过溶剂浇铸和气体发泡制备的盐熔支架中孔互连性的增强,并且孔互连性的程度随着处理时间的延长而增强。盐晶体熔融24小时增加了盐晶体的曲率半径,并导致溶剂浇铸支架的压缩模量增加了两倍(总孔隙率为97 +/- 1%)。气体发泡之前,NaCl晶体的熔融导致支架的压缩模量从277 +/- 60k Pa降低到187 +/- 30k Pa(总孔隙度为94 +/- 1%)。产生的高度互连的支架对促进细胞迁移,丰富的细胞间相互作用以及组织工程支架内潜在的神经和血管生长有改善作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号