首页> 外文期刊>Theoretical computer science >Safe and stabilizing distributed multi-path cellular flows
【24h】

Safe and stabilizing distributed multi-path cellular flows

机译:安全稳定的分布式多径蜂窝流

获取原文
获取原文并翻译 | 示例
           

摘要

We study the problem of distributed traffic control in the partitioned plane, where the movement of all entities (robots, vehicles, etc.) within each geographic partition (cell) is the same. Each cell is controlled by software to move entities across the cell to route entities from sources to targets without collisions. We present a formal model of a distributed traffic control protocol that guarantees minimum separation between entities, even as the software controlling some cells fails by crashing. The distributed traffic control protocol relies on two principles: (a) temporary blocking entity transfers between adjacent cells for maintenance of safety and (b) local geographical routing for guaranteeing progress of entities to their targets. Establishing liveness in distributed traffic control systems is challenging, but liveness analysis will be necessary to apply distributed algorithms in applications like coordinating robot swarms and intelligent highway systems. Once new failures stop occurring, in the case of a single target cell, the protocol is guaranteed to self-stabilize and entities with feasible paths to the target cell make progress towards it. For multiple targets, failures may cause deadlocks in the system, so we identify a class of non-deadlocking failures where all entities are guaranteed to make progress to their respective targets. Our assertional proofs may serve as templates for the analysis of other distributed traffic control protocols. We also present simulation results to validate the formal model, and to provide estimates of entity throughput as a function of entity velocity, safety separation distance, single-target path complexity, failure-recovery rates, and multi-target path complexity. (C) 2015 Elsevier B.V. All rights reserved.
机译:我们研究了分区平面中的分布式交通控制问题,其中每个实体(机器人,车辆等)在每个地理分区(单元)内的移动都相同。每个单元都由软件控制,以在整个单元上移动实体,以将实体从源路由到目标,而不会发生冲突。我们提出了一种分布式流量控制协议的正式模型,该模型可确保实体之间的最小间隔,即使控制某些单元的软件因崩溃而失败。分布式流量控制协议依赖于两个原则:(a)临时阻塞实体在相邻小区之间的转移,以维护安全;(b)本地地理路由,以确保实体向其目标前进。在分布式交通控制系统中建立生命力具有挑战性,但是要在诸如协调机器人群和智能公路系统之类的应用中应用分布式算法,生命力分析将是必要的。一旦停止出现新的故障,就使用单个目标单元格而言,可以保证该协议能够自我稳定,并且具有通往目标单元格的可行路径的实体可以朝着这一目标前进。对于多个目标,故障可能会导致系统死锁,因此我们确定了一类无死锁的故障,可以保证所有实体都可以朝各自的目标发展。我们的断言证明可以用作分析其他分布式流量控制协议的模板。我们还提供了仿真结果,以验证形式模型,并提供实体吞吐量的估计值,该函数是实体速度,安全间隔距离,单目标路径复杂度,故障恢复率和多目标路径复杂度的函数。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号