首页> 外文期刊>The Paton Welding Journal >SIMPLIFIED ANALYTICAL MODELING OF DYNAMIC BEHAVIOR OF THE KEYHOLE FOR DIFFERENT SPATIAL LASER INTENSITY DISTRIBUTIONS DURING LASER DEEP PENETRATION WELDING
【24h】

SIMPLIFIED ANALYTICAL MODELING OF DYNAMIC BEHAVIOR OF THE KEYHOLE FOR DIFFERENT SPATIAL LASER INTENSITY DISTRIBUTIONS DURING LASER DEEP PENETRATION WELDING

机译:激光深熔焊接过程中不同空间激光强度分布的键孔动力学行为简化分析模型

获取原文
获取原文并翻译 | 示例
           

摘要

During laser deep penetration welding a characteristic keyhole is created, when the intensity of laser beam exceeds material depending limit. The generated system of keyhole and surrounding melt pool is highly dynamic. Dynamics in the weld pool and in keyhole are mainly responsible for keyhole instabilities that can cause keyhole collapses during the welding process. This can lead to unwanted enclosures or pores that reduce the quality of welded joint. For better understanding of the complex system, a simplified analytical model of the keyhole is used providing a description of the keyhole geometry. It also calculates the influence of different spatial laser intensity distributions on keyhole dynamics and resultant tendency to form pores. The model is used to calculate the temperature on the keyhole wall from energy equation containing laser beam energy absorption, heat conduction and evaporation losses. The surface temperature is needed to calculate the keyhole radius by solving the pressure equilibrium equation. This contains the recoil pressure at the end of the Knudsen layer on the keyhole surface, which keeps the keyhole open against the surface tension pressure of the surrounding liquid material. In the second step, a dynamic equation that describes the keyhole behavior is used. The dynamic calculation is based on the force balance in the keyhole. To observe the influence of different spatial laser intensity distributions the Gaussian and top hat distribution are implemented in calculation. It can be found that the keyhole geometry is influenced by different laser intensity distributions and pressure gradient changes significantly leading to highly different dynamic behaviors.
机译:在激光深熔焊接过程中,当激光束的强度超过材料极限时,就会形成特征性的小孔。锁孔和周围熔池的生成系统是高度动态的。焊缝池和锁孔中的动力学是造成锁孔不稳定的主要原因,锁孔不稳定性会在焊接过程中导致锁孔塌陷。这会导致有害的外壳或气孔,从而降低焊接接头的质量。为了更好地理解复杂的系统,使用了简化的钥匙孔分析模型来描述钥匙孔的几何形状。它还计算了不同空间激光强度分布对锁孔动力学的影响以及形成孔的趋势。该模型用于根据包含激光束能量吸收,热传导和蒸发损失的能量方程式来计算钥匙孔壁上的温度。通过求解压力平衡方程,需要表面温度来计算钥匙孔半径。这包含在锁孔表面上的Knudsen层末端的反冲压力,该反冲压力使锁孔抵抗周围液体材料的表面张力压力保持打开状态。在第二步中,使用描述锁眼行为的动态方程式。动态计算基于锁孔中的力平衡。为了观察不同空间激光强度分布的影响,在计算中采用了高斯分布和高帽分布。可以发现,钥匙孔的几何形状受到不同的激光强度分布的影响,并且压力梯度的变化显着地导致了高度不同的动态行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号