...
首页> 外文期刊>The Plant Cell >Fe sparing and fe recycling contribute to increased superoxide dismutase capacity in iron-starved Chlamydomonas reinhardtii.
【24h】

Fe sparing and fe recycling contribute to increased superoxide dismutase capacity in iron-starved Chlamydomonas reinhardtii.

机译:保留铁和回收铁有助于增加铁饥饿的衣藻中的超氧化物歧化酶的能力。

获取原文
获取原文并翻译 | 示例
           

摘要

Fe deficiency is one of several abiotic stresses that impacts plant metabolism because of the loss of function of Fe-containing enzymes in chloroplasts and mitochondria, including cytochromes, FeS proteins, and Fe superoxide dismutase (FeSOD). Two pathways increase the capacity of the Chlamydomonas reinhardtii chloroplast to detoxify superoxide during Fe limitation stress. In one pathway, MSD3 is upregulated at the transcriptional level up to 103-fold in response to Fe limitation, leading to synthesis of a previously undiscovered plastid-specific MnSOD whose identity we validated immunochemically. In a second pathway, the plastid FeSOD is preferentially retained over other abundant Fe proteins, heme-containing cytochrome f, diiron magnesium protoporphyrin monomethyl ester cyclase, and Fe2S2-containing ferredoxin, demonstrating prioritized allocation of Fe within the chloroplast. Maintenance of FeSOD occurs, after an initial phase of degradation, by de novo resynthesis in the absence of extracellular Fe, suggesting the operation of salvage mechanisms for intracellular recycling and reallocation.
机译:缺铁是影响植物代谢的几种非生物胁迫之一,因为叶绿体和线粒体中含铁的酶(包括细胞色素,FeS蛋白和超氧化物歧化酶)的功能丧失。在铁限制胁迫期间,两条途径增加了莱茵衣藻叶绿体对超氧化物解毒的能力。在一种途径中,响应于Fe的限制,MSD3在转录水平上调高达10 3 倍,从而导致合成了以前未发现的质体特异性MnSOD,我们通过免疫化学方法验证了其身份。在第二种途径中,质体FeSOD优先于其他丰富的Fe蛋白,含血红素的细胞色素f,二铁镁原卟啉单甲酯环化酶和Fe 2 S 2 -含有铁氧还蛋白,表明在叶绿体中铁的优先分配。在降解的初始阶段之后,通过在没有细胞外铁的情况下从头重新合成来维持FeSOD,这表明了挽救机制在细胞内再循环和再分配中的作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号