...
首页> 外文期刊>The Journal of Experimental Biology >A computational study of the aerodynamics and forewing-hindwing interaction of a model dragonfly in forward flight
【24h】

A computational study of the aerodynamics and forewing-hindwing interaction of a model dragonfly in forward flight

机译:蜻蜓模型在向前飞行中的空气动力学和前-后相互作用的计算研究

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The aerodynamics and forewing-hindwing interaction of a model dragonfly in forward flight are studied, using the method of numerically solving the Navier-Stokes equations. Available morphological and stroke-kinematic parameters of dragonfly (Aeshna juncea) are used for the model dragonfly. Six advance ratios (J; ranging from 0 to 0.75) and, at each J, four forewing-hindwing phase angle differences (gamma(d); 180 degrees , 90 degrees , 60 degrees and 0 degrees ) are considered. The mean vertical force and thrust are made to balance the weight and body-drag, respectively, by adjusting the angles of attack of the wings, so that the flight could better approximate the real flight. At hovering and low J (J=0, 0.15), the model dragonfly uses separated flows or leading-edge vortices (LEV) on both the fore- and hindwing downstrokes; at medium J (J=0.30, 0.45), it uses the LEV on the forewing downstroke and attached flow on the hindwing downstroke; at high J (J=0.6, 0.75), it uses attached flows on both fore- and hindwing downstrokes. (The upstrokes are very lightly loaded and, in general, the flows are attached.) At a given J, at gamma(d)=180 degrees , there are two vertical force peaks in a cycle, one in the first half of the cycle, produced mainly by the hindwing downstroke, and the other in the second half of the cycle, produced mainly by the forewing downstroke; at gamma(d)=90 degrees , 60 degrees and 0 degrees , the two force peaks merge into one peak. The vertical force is close to the resultant aerodynamic force [because the thrust (or body-drag) is much smaller than vertical force (or the weight)]. 55-65% of the vertical force is contributed by the drag of the wings. The forewing-hindwing interaction is detrimental to the vertical force (and resultant force) generation. At hovering, the interaction reduces the mean vertical force (and resultant force) by 8-15%, compared with that without interaction; as J increases, the reduction generally decreases (e.g. at J=0.6 and gamma(d)=90 degrees , it becomes 1.6%). A possible reason for the detrimental interaction is as follows: each of the wings produces a mean vertical force coefficient close to half that needed for weight support, and a downward flow is generated in producing the vertical force; thus, in general, a wing moves in the downwash-velocity field induced by the other wing, reducing its aerodynamic forces.
机译:利用数值求解Navier-Stokes方程的方法,研究了模型蜻蜓在向前飞行中的空气动力学特性和前向后相互作用。蜻蜓(Aeshna juncea)的可用形态学和中风运动学参数用于模型蜻蜓。考虑六个前进比(J;范围从0到0.75),并且每个J都考虑四个前-后翼相角差(γ(d); 180度,90度,60度和0度)。通过调节机翼的迎角,分别使平均垂直力和推力平衡重量和车身阻力,从而使飞行能够更好地逼近实际飞行。在悬停和低J(J = 0,0.15)时,蜻蜓模型在前冲和后冲都使用分离的气流或前沿涡流(LEV);在中等J(J = 0.30,0.45)时,它在前冲程下冲程使用LEV,在后翼下冲程使用附加流量。在高J(J = 0.6,0.75)时,它在前降行程和后降行程使用附加的流量。 (上冲程负荷很小,并且通常会附着流动。)在给定的J处,在γ(d)= 180度时,一个循环中有两个垂直力峰值,一个在循环的前半部中,主要由后降行程产生,而在周期的后半部分则主要由前降行程产生;在gamma(d)= 90度,60度和0度时,两个力峰合并为一个峰。垂直力接近合成的空气动力[因为推力(或车身阻力)比垂直力(或重量)小得多]。垂直力的55-65%由机翼的阻力贡献。前-后相互作用对竖向力(和合力)的产生是有害的。与没有互动时相比,悬停时互动会使平均垂直力(和合力)降低8-15%;随着J的增加,减少量通常会减少(例如,在J = 0.6且gamma(d)= 90度时,它变为1.6%)。有害相互作用的可能原因如下:每个机翼产生的平均垂直力系数接近重量支撑所需的一半,并且在产生垂直力时产生向下的流动。因此,一般来说,机翼在另一机翼引起的下冲速度场中移动,从而减小了其空气动力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号