首页> 外文期刊>The Journal of Experimental Biology >Adaptive bone formation in acellular vertebrae of sea bass (Dicentrarchus labrax L.)
【24h】

Adaptive bone formation in acellular vertebrae of sea bass (Dicentrarchus labrax L.)

机译:鲈鱼无细胞椎骨中的适应性骨形成(Dicentrarchus labrax L.)

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Mammalian bone is an active tissue in which osteoblasts and osteoclasts balance bone mass. This process of adaptive modelling and remodelling is probably regulated by strain-sensing osteocytes. Bone of advanced teleosts is acellular yet, despite the lack of osteocytes, it is capable of an adaptive response to physical stimuli. Strenuous exercise is known to induce lordosis. Lordosis is a ventrad curvature of the vertebral column, and the affected vertebrae show an increase in bone formation. The effects of lordosis on the strain distribution in sea bass (Dicentrarchus labrax L.) vertebrae are assessed using finite element modelling. The response of the local tissue is analyzed spatially and ontogenetically in terms of bone volume. Lordotic vertebrae show a significantly increased strain energy due to the increased load compared with normal vertebrae when loaded in compression. High strain regions are found in the vertebral centrum and parasagittal ridges. The increase in strain energy is attenuated by a change in architecture due to the increased bone formation. The increased bone formation is seen mainly at the articular surfaces of the vertebrae, although some extra bone is formed in the vertebral centrum. Regions in which the highest strains are found do not spatially correlate with regions in which the most extensive bone apposition occurs in lordotic vertebrae of sea bass. Mammalian-like strain-regulated bone modelling is probably not the guiding mechanism in adaptive bone modelling of acellular sea bass vertebrae. Chondroidal ossification is found at the articular surfaces where it mediates a rapid adaptive response, potentially attenuating high stresses on the dorsal zygapophyses.
机译:哺乳动物骨是成骨细胞和破骨细胞平衡骨量的活跃组织。自适应建模和重塑的过程可能由应变敏感的骨细胞调节。尽管缺乏骨细胞,但晚期硬骨的骨仍是无细胞的,但它能够对物理刺激作出适应性反应。剧烈运动会诱发脊柱前凸。脊椎前凸是椎骨的腹板弯曲,并且受影响的椎骨显示出骨形成的增加。使用有限元模型评估了脊柱前凸对海鲈(Dicentrarchus labrax L.)椎骨中应变分布的影响。根据骨体积在空间上和本体上分析局部组织的反应。当受压时,与普通椎骨相比,由于椎体的负荷增加,故脊椎椎骨的应变能显着增加。在椎体中枢和矢状脊附近发现高应变区域。由于增加的骨骼形成,结构改变会减弱应变能的增加。尽管在椎体的中枢处形成了一些额外的骨骼,但主要在椎骨的关节表面看到了增加的骨骼形成。发现最大应变的区域在空间上与在鲈鱼的脊柱前凸椎骨中出现最广泛的骨骼并置的区域在空间上不相关。哺乳动物样应变调节骨骼建模可能不是脱细胞鲈鱼椎骨的自适应骨骼建模的指导机制。在关节表面发现软骨样骨化,其介导快速的适应性反应,有可能减轻背侧po突的高压力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号