首页> 外文期刊>The Journal of Experimental Biology >Gecko toe and lamellar shear adhesion on macroscopic, engineered rough surfaces
【24h】

Gecko toe and lamellar shear adhesion on macroscopic, engineered rough surfaces

机译:壁虎脚趾和层状剪切粘附在宏观,工程粗糙表面上

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The role in adhesion of the toes and lamellae - intermediate-sized structures - found on the gecko foot remains unclear. Insight into the function of these structures can lead to a more general understanding of the hierarchical nature of the gecko adhesive system, but in particular how environmental topology may relate to gecko foot morphology. We sought to discern the mechanics of the toes and lamellae by examining gecko adhesion on controlled, macroscopically rough surfaces. We used live Tokay geckos, Gekko gecko, to observe the maximum shear force a gecko foot can attain on an engineered substrate constructed with sinusoidal patterns of varying amplitudes and wavelengths in sizes similar to the dimensions of the toes and lamellae structures (0.5 to 6 mm). We found shear adhesion was significantly decreased on surfaces that had amplitudes and wavelengths approaching the lamella length and inter-lamella spacing, losing 95% of shear adhesion over the range tested. We discovered that the toes are capable of adhering to surfaces with amplitudes much larger than their dimensions even without engaging claws, maintaining 60% of shear adhesion on surfaces with amplitudes of 3 mm. Gecko adhesion can be predicted by the ratio of the lamella dimensions to surface feature dimensions. In addition to setae, remarkable macroscopic-scale features of gecko toes and lamellae that include compliance and passive conformation are necessary to maintain contact, and consequently, generate shear adhesion on macroscopically rough surfaces. Findings on the larger scale structures in the hierarchy of gecko foot function could provide the biological inspiration to drive the design of more effective and versatile synthetic fibrillar adhesives.
机译:在壁虎脚上发现的脚趾和薄片(中等大小的结构)的粘附作用尚不清楚。洞察这些结构的功能可以导致对壁虎胶粘剂系统的层级性质有更全面的了解,但特别是环境拓扑结构如何与壁虎脚的形态有关。我们试图通过检查壁虎在受控的,宏观上粗糙的表面上的粘附力来辨别脚趾和薄片的力学。我们使用了活的Tokay壁虎,即Gekko壁虎,观察了壁虎脚在由工程构造的基底上所能获得的最大剪切力,该基底构造成振幅和波长变化的正弦图案,其大小类似于脚趾和薄片结构的尺寸(0.5至6 mm )。我们发现在振幅和波长接近薄片长度和薄片间间距的表面上,剪切粘合力显着降低,在测试范围内损失了95%的剪切粘合力。我们发现,即使没有接合爪,脚趾也能够粘附振幅比其尺寸大得多的振幅的表面,从而在振幅3 mm的表面上保持60%的剪切粘附力。壁虎附着力可以通过薄片尺寸与表面特征尺寸之比来预测。除刚毛以外,壁虎脚趾和薄片的显着宏观尺度特征(包括顺应性和被动构象)对于保持接触也是必要的,因此,在宏观粗糙表面上产生剪切粘附力。壁虎脚功能层次结构中较大规模结构的发现可以提供生物学灵感,以驱动更有效和通用的合成纤维状胶粘剂的设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号