首页> 外文期刊>The Journal of Experimental Biology >Respiratory water loss in free-flying pigeons
【24h】

Respiratory water loss in free-flying pigeons

机译:自由飞行的鸽子呼吸失水

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

We assessed respiratory and cutaneous water loss in trained tippler pigeons (Columba livia) both at rest and in free flight. In resting pigeons, exhaled air temperature T-ex increased with ambient air temperature T-a (T-ex=16.3+0.705T(a)) between 15 degreesC and 30 degreesC, while tidal volume V-T (V-T=4.7 +/-1.0mI, mean +/- S.D. at standard temperature and pressure dry) and breathing frequency f(R) (f(R)=0.46 +/-0.06 breaths s(-1)) were independent of T-a. Respiratory water loss, RWL, was constant over the range of T-a (RWL=1.2 +/-0.4 mg g(-1) h(-1)) used. In flying pigeons, T-ex increased with T-a (T-ex=25.8+0.34T(a)), while f(R) was independent of T-a (f(R)=5.6 +/-1.4 breaths s(-1)) between 8.8 degreesC and 27 degreesC. Breathing frequency varied intermittently between 2 and 8 breaths s(-1) during flight and was not always synchronized with wing-beat frequency. RWL was independent of air temperature (RWL=9.2 +/-2.9 mg g(-1) h(-1)), but decreased with increasing inspired air water vapor density (rho in) (RWL=12.5-0.362 rho in), whereas cutaneous water loss, CWL, increased with air temperature (CWL=10.122+0.898T(a)), but was independent of rho in. RWL was 25.7-32.2 %, while CWL was 67.8-74.3 % of the total evaporative water loss. The data indicate that pigeons have more efficient countercurrent. heat exchange in their anterior respiratory passages when at rest than in flight, allowing them to recover more water at rest at lower air temperatures. When evaporative water loss increases in flight, especially at high T-a, the major component is cutaneous rather than respiratory, possibly brought about by reducing the skin water vapor diffusion resistance. Because of the tight restrictions imposed by gas exchange in flight, the amount of water potentially lost through respiration is limited.
机译:我们评估了静息和自由飞行中训练有素的快鸽(Columba livia)的呼吸和皮肤失水情况。在静息的鸽子中,呼气温度T-ex在15摄氏度至30摄氏度之间随环境空气温度Ta(T-ex = 16.3 + 0.705T(a))升高而潮气量VT(VT = 4.7 +/- 1.0mI,在标准温度和干燥压力下的平均+/- SD)和呼吸频率f(R)(f(R)= 0.46 +/- 0.06呼吸s(-1))与Ta无关。呼吸失水RWL在所使用的T-a范围内是恒定的(RWL = 1.2 +/- 0.4 mg g(-1)h(-1))。在飞行的鸽子中,T-ex随Ta升高(T-ex = 25.8 + 0.34T(a)),而f(R)与Ta无关(f(R)= 5.6 +/- 1.4呼吸s(-1) )在8.8摄氏度至27摄氏度之间。在飞行过程中,呼吸频率在2到8次呼吸s(-1)之间间歇地变化,并且并不总是与机翼拍频同步。 RWL与空气温度无关(RWL = 9.2 +/- 2.9 mg g(-1)h(-1)),但随着吸入空气水蒸气密度(rho in)的增加而降低(RWL = 12.5-0.362 rho in),而皮肤失水CWL随着气温的升高而增加(CWL = 10.122 + 0.898T(a)),但与rho in无关。RWL为25.7-32.2%,而CWL为蒸发水总失水的67.8-74.3% 。数据表明鸽子具有更有效的逆流作用。静止时比飞行中前呼吸道热交换,使他们在较低的空气温度下可以恢复更多的水分。当飞行中蒸发水分损失增加时,尤其是在高T-a时,主要成分是皮肤而不是呼吸,可能是由于降低皮肤水蒸气扩散阻力而引起的。由于飞行中的气体交换施加了严格的限制,因此限制了通过呼吸可能损失的水量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号