...
首页> 外文期刊>The Journal of Experimental Biology >Oxygen- and capacity-limitation of thermal tolerance: a matrix for integrating climate-related stressor effects in marine ecosystems
【24h】

Oxygen- and capacity-limitation of thermal tolerance: a matrix for integrating climate-related stressor effects in marine ecosystems

机译:耐热性的氧气和容量限制:用于整合海洋生态系统中与气候相关的应激源效应的矩阵

获取原文
获取原文并翻译 | 示例

摘要

The concept of oxygen-and capacity-dependent thermal tolerance in aquatic ectotherms has successfully explained climate-induced effects of rising temperatures on species abundance in the field. Oxygen supply to tissues and the resulting aerobic performance characters thus form a primary link between organismal fitness and its role and functioning at the ecosystem level. The thermal window of performance in water breathers matches their window of aerobic scope. Loss of performance reflects the earliest level of thermal stress, caused by hypoxaemia and the progressive mismatch of oxygen supply and demand at the borders of the thermal envelope. Oxygen deficiency elicits the transition to passive tolerance and associated systemic and cellular stress signals like hormonal responses or oxidative stress as well as the use of protection mechanisms like heat shock proteins at thermal extremes. Thermal acclimatization between seasons or adaptation to a climate regime involves shifting thermal windows and adjusting window widths. The need to specialize on a limited temperature range results from temperature-dependent trade-offs at several hierarchical levels, from molecular structure to whole-organism functioning, and may also support maximized energy efficiency. Various environmental factors like CO2 (ocean acidification) and hypoxia interact with these principal relationships. Existing knowledge suggests that these factors elicit metabolic depression supporting passive tolerance to thermal extremes. However, they also exacerbate hypoxaemia, causing a narrowing of thermal performance windows and prematurely leading the organism to the limits of its thermal acclimation capacity. The conceptual analysis suggests that the relationships between energy turnover, the capacities of activity and other functions and the width of thermal windows may lead to an integrative understanding of specialization on climate and, as a thermal matrix, of sensitivity to climate change and the factors involved. Such functional relationships might also relate to climate-induced changes in species interactions and, thus, community responses at the ecosystem level.
机译:水生等温线中与氧气和容量有关的热耐受性的概念已成功解释了气候引起的温度升高对田间物种丰富度的影响。因此,向组织的氧气供应以及由此产生的有氧运动特征形成了有机适应性与其在生态系统水平上的作用和功能之间的主要联系。水呼吸器的热性能窗口与其有氧范围的窗口相匹配。性能损失反映了由低氧血症和热包络边界处氧气供需的逐步失配引起的最早的热应力水平。缺氧引发了向被动耐受性以及相关的全身和细胞应激信号(如激素反应或氧化应激)的过渡,以及在极端温度下使用了保护机制(如热激蛋白)。季节之间的热适应或适应气候变化的方法包括移动热窗和调整窗宽。需要专门研究有限的温度范围是由于从分子结构到整个有机体功能,在几个层次上都依赖于温度,这取决于权衡取舍,也可能支持最大的能源效率。各种环境因素(如CO2(海洋酸化)和缺氧)与这些主要关系相互作用。现有知识表明,这些因素引起代谢抑制,支持对极端温度的被动耐受。但是,它们还会加剧低氧血症,导致热性能窗口变窄,过早地导致生物体达到其热适应能力的极限。概念分析表明,能量转换,活动能力和其他功能与热窗宽度之间的关系可能导致对气候专业化以及作为热矩阵的对气候变化敏感性及其相关因素的综合理解。 。这种功能关系还可能与气候引起的物种相互作用的变化有关,因此也与生态系统一级的社区响应有关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号