...
首页> 外文期刊>The Journal of Experimental Biology >Pulsed jet dynamics of squid hatchlings at intermediate Reynolds numbers
【24h】

Pulsed jet dynamics of squid hatchlings at intermediate Reynolds numbers

机译:中等雷诺数下的鱿鱼孵化场的脉冲射流动力学

获取原文
获取原文并翻译 | 示例

摘要

Squid paralarvae (hatchlings) rely predominantly on a pulsed jet for locomotion, distinguishing them from the majority of aquatic locomotors at low/intermediate Reynolds numbers (Re), which employ oscillatory/undulatory modes of propulsion. Although squid paralarvae may delineate the lower size limit of biological jet propulsion, surprisingly little is known about the hydrodynamics and propulsive efficiency of paralarval jetting within the intermediate Re realm. To better understand paralarval jet dynamics, we used digital particle image velocimetry (DPIV) and high-speed video to measure bulk vortex properties (e.g. circulation, impulse, kinetic energy) and other jet features [e.g. average and peak jet velocity along the jet centerline (U(j) and U(jmax), respectively), jet angle, jet length based on the vorticity and velocity extents (L(omega) and L(V), respectively), jet diameter based on the distance between vorticity peaks (D(omega)), maximum funnel diameter (D(F)), average and maximum swimming speed (U and U(max), respectively)] in free-swimming Doryteuthis pealeii paralarvae (1.8 mm dorsal mantle length) (Re(squid)=25-90). Squid paralarvae spent the majority of their time station holding in the water column, relying predominantly on a frequent, high-volume, vertically directed jet. During station holding, paralarvae produced a range of jet structures from spherical vortex rings (L(omega)/D(omega)=2.1, L(V)/D(F)=13.6) to more elongated vortex ring structures with no distinguishable pinch-off (L(omega)/D(omega)=4.6, L(V)/D(F)=36.0). To swim faster, paralarvae increased pulse duration and L(omega)/D(omega), leading to higher impulse but kept jet velocity relatively constant. Paralarvae produced jets with low slip, i.e. ratio of jet velocity to swimming velocity (U(j)/U or U(jmax)/U(max)), and exhibited propulsive efficiency [eta(pd)=74.9+/-8.83% (+/-s.d.) for deconvolved data] comparable with oscillatory/undulatory swimmers. As slip decreased with speed, propulsive efficiency increased. The detection of high propulsive efficiency in paralarvae is significant because it contradicts many studies that predict low propulsive efficiency at intermediate Re for inertial forms of locomotion.
机译:鱿鱼幼虫(幼体)主要依靠脉冲射流进行运动,从而使它们与大多数采用低/中雷诺数(Re)的水生运动动物区别开来,后者采用振荡/波动的推进方式。尽管鱿鱼寄生虫可能会划定生物射流推进器的下限,但令人惊讶的是,人们对中间Re领域中的寄生虫射流的流体动力学和推进效率知之甚少。为了更好地了解寄生虫的射流动力学,我们使用了数字粒子图像测速仪(DPIV)和高速视频来测量整体涡旋特性(例如循环,冲量,动能)和其他射流特征[例如沿射流中心线的平均射流速度和峰值射流速度(分别为U(j)和U(jmax)),射流角,基于涡度和速度范围的射流长度(分别为L(ω)和L(V)),射流自由泳Doryteuthis pealeii paralarvae(1.8)的最大涡度(D(ω)),最大漏斗直径(D(F)),平均和最大游泳速度(分别为U和U(max))之间的距离]底背膜长度(mm)(Re(鱿鱼)= 25-90)。鱿鱼副卵大部分时间都停留在水柱中,主要依靠频繁的,大流量的,垂直指向的射流。在站位保持期间,幼虫产生了一系列的射流结构,从球形涡流环(L(ω)/ D(ω)= 2.1,L(V)/ D(F)=​​ 13.6)到更细长的涡流环​​结构,没有明显的收缩-关闭(L(欧米茄)/ D(欧米茄)= 4.6,L(V)/ D(F)=​​ 36.0)。为了更快地游泳,幼虫增加了脉冲持续时间和L(ω)/ D(ω),导致更高的冲动,但保持射流速度相对恒定。幼虫产生的滑移率低,即射流速度与游泳速度之比(U(j)/ U或U(jmax)/ U(max)),并具有推进效率[eta(pd)= 74.9 +/- 8.83% (反卷积数据的(+/- sd)]可与摆动/波动游泳者媲美。随着滑移速度的降低,推进效率增加。对幼虫高推进效率的检测很重要,因为它与许多预测惯性运动的中等Re的低推进效率相矛盾。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号