...
首页> 外文期刊>The Journal of Experimental Biology >Scaling of wingbeat frequency with body mass in bats and limits to maximum bat size
【24h】

Scaling of wingbeat frequency with body mass in bats and limits to maximum bat size

机译:翼拍频率随蝙蝠体重变化的比例以及最大蝙蝠尺寸的限制

获取原文
获取原文并翻译 | 示例

摘要

The ability to fly opens up ecological opportunities but flight mechanics and muscle energetics impose constraints, one of which is that the maximum body size must be kept below a rather low limit. The muscle power available for flight increases in proportion to flight muscle mass and wingbeat frequency. The maximum wingbeat frequency attainable among increasingly large animals decreases faster than the minimum frequency required, so eventually they coincide, thereby defining the maximum body mass at which the available power just matches up to the power required for sustained aerobic flight. Here, we report new wingbeat frequency data for 27 morphologically diverse bat species representing nine families, and additional data from the literature for another 38 species, together spanning a range from 2.0 to 870 g. For these species, wingbeat frequency decreases with increasing body mass as M-b(-0.26). We filmed 25 of our 27 species in free flight outdoors, and for these the wingbeat frequency varies as M-b(-0.30). These exponents are strikingly similar to the body mass dependency M-b(-0.27) among birds, but the wingbeat frequency is higher in birds than in bats for any given body mass. The downstroke muscle mass is also a larger proportion of the body mass in birds. We applied these empirically based scaling functions for wingbeat frequency in bats to biomechanical theories about how the power required for flight and the power available converge as animal size increases. To this end we estimated the muscle mass-specific power required for the largest flying extant bird (12-16. kg) and assumed that the largest potential bat would exert similar muscle mass-specific power. Given the observed scaling of wingbeat frequency and the proportion of the body mass that is made up by flight muscles in birds and bats, we estimated the maximum potential body mass for bats to be 1.1-2.3. kg. The largest bats, extinct or extant, weigh 1.6. kg. This is within the range expected if it is the bat characteristic flight muscle mass and wingbeat frequency that limit the maximum body mass in bats. It is only a tenth the mass of the largest flying extant bird.
机译:飞行的能力开辟了生态机会,但是飞行机制和肌肉能量学施加了限制,其中之一就是必须将最大体型保持在相当低的极限以下。可用于飞行的肌肉力量与飞行肌肉质量和拍打频率成正比。在越来越大的动物中可获得的最大机翼频率下降速度快于所需的最小频率,因此最终它们重合,从而确定了最大体重,在该最大体重下,可用功率刚好与持续有氧飞行所需的功率相匹配。在这里,我们报告了代表9个科的27种形态多样的蝙蝠新的翅膀频率数据,以及文献中另外38种的附加数据,范围从2.0到870 g。对于这些物种,翅膀搏动频率随着体重的增加而降低,为M-b(-0.26)。我们在户外自由飞行中拍摄了我们27个物种中的25个,因此它们的拍频变化为M-b(-0.30)。这些指数惊人地类似于鸟类中对体重的依赖性M-b(-0.27),但是对于任何给定的质量,鸟类中的翅膀搏动频率都高于蝙蝠。向下运动的肌肉质量也占家禽体重的较大比例。我们将这些基于经验的缩放函数用于蝙蝠翼拍频率的生物力学理论应用于关于飞行所需功率和可用功率如何随着动物体型增加而收敛的生物力学理论。为此,我们估计了最大的现存飞行鸟类(12-16。kg)所需的肌肉质量比功率,并假设最大的潜在蝙蝠将发挥相似的肌肉质量比功率。考虑到观察到的拍打频率的缩放比例以及鸟类和蝙蝠的飞行肌肉所占体重的比例,我们估计蝙蝠的最大潜在体重为1.1-2.3。公斤。灭绝或现存的最大蝙蝠重1.6。公斤。如果是蝙蝠的飞行特性肌肉质量和拍打频率限制了蝙蝠的最大体重,则该值在预期范围内。它仅是现存最大飞鸟的质量的十分之一。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号