首页> 外文期刊>The Journal of Experimental Biology >Consequences of buoyancy to the maneuvering capabilities of a foot-propelled aquatic predator, the great cormorant (Phalcrocorax carbo sinensis).
【24h】

Consequences of buoyancy to the maneuvering capabilities of a foot-propelled aquatic predator, the great cormorant (Phalcrocorax carbo sinensis).

机译:浮力对脚踩水生捕食者大cor(Phalcrocorax carbo sinensis)的操纵能力的影响。

获取原文
获取原文并翻译 | 示例
           

摘要

Great cormorants are foot-propelled aquatic divers utilizing a region of the water column where their underwater foraging behavior is affected by their buoyancy. While swimming horizontally underwater, cormorants use downward lift forces generated by their body and tail to overcome their buoyancy. Here we assess the potential of this swimming strategy for controlling maneuvers in the vertical plane. We recorded the birds swimming through a submerged obstacle course and analyzed their maneuvers. The birds reduced swimming speed by only 12% to maneuver and were able to turn upward and then downward in the sagittal plane at a minimal turning radius of 32+/-4 cm (40% body length). Using a quasi-steady approach, we estimated the time-line for hydrodynamic forces and the force-moments produced while maneuvering. We found that the tail is responsible for the pitch of the body while motions of the body, tail, neck and feet generate forces normal (vertically) to the swimming direction that interact with buoyancy to change the birds' trajectory. Vertical maneuvers in cormorants are asymmetric in energy cost. When turning upward, the birds use their buoyancy but they must work harder to turn downward. Lift forces generated by the body were always directed ventrally. Propulsion improves the ability to make tight turns when the center of the turn is ventral to the birds. The neck produced only a small portion (10%) of the normal vertical forces but its length may allow prey capture at the end of pursuit, within the minimum turning radius.
机译:大cor是利用水柱区域的脚踩水上潜水器,在那里他们的水下觅食行为受到浮力的影响。在水下水平游泳时,cor利用身体和尾巴产生的向下升力克服浮力。在这里,我们评估了这种游泳策略在垂直平面上控制动作的潜力。我们记录了鸟类在水下障碍物路线中游泳并分析了它们的动作。鸟类将机动速度降低了12%,并且能够以32 +/- 4 cm(体长的40%)的最小转弯半径在矢状平面内向上然后向下转弯。使用准稳态方法,我们估算了流体动力的时间线和操纵时产生的力矩。我们发现,尾巴负责身体的俯仰,而身体,尾巴,脖子和脚的运动会产生垂直于游泳方向的力(垂直),该力与浮力相互作用以改变鸟类的运动轨迹。 cor的垂直动作在能量成本上是不对称的。向上转弯时,鸟会使用其浮力,但必须更加努力地向下转弯。身体产生的提升力始终指向腹侧。当转弯中心位于家禽腹侧时,推进力可提高转弯能力。颈部仅产生正常垂直力的一小部分(10%),但其长度可能允许猎物在追尾时在最小转弯半径内捕获。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号