...
首页> 外文期刊>The Journal of Experimental Biology >THE AVIAN LUNG - IS THERE AN AERODYNAMIC EXPIRATORY VALVE
【24h】

THE AVIAN LUNG - IS THERE AN AERODYNAMIC EXPIRATORY VALVE

机译:航空肺-是否有气动呼气阀

获取原文
获取原文并翻译 | 示例

摘要

The unidirectional gas-flow pattern through the avian lung is thought to result from 'aerodynamic valves'; support for this hypothesis lies mainly in the failure to find any evidence for anatomical valves. During expiration, air hows from the caudal air sacs through the major exchange area of the lung, the paleopulmonic parabronchi, instead of bypassing the lungs via the intrapulmonary bronchus. We tested whether the effectiveness of this expiratory flow control mechanism depends on aerodynamic factors, especially convective inertial forces that depend on gas density and flow velocity. In pump-ventilated, anaesthetized geese, a bolus of tracer gas was introduced into both the right and left caudal thoracic air sacs during an end-inspiratory pause. During the first expiration, the rise of tracer levels within the caudal trachea was measured. Valve efficacy was positively correlated with the rate of expiratory gas flow, Vao (range 8-200 ml s(-1)), At flows assumed to occur during exercise in geese (VAO>100 ml s(-1)), the expiratory valve efficacy was approximately 95%; it was less effective at lower hows. Surprisingly, the density (p) of the background gas (p of He/O-2=0.43 gl(-1), Ar/O-2=1.72 gl(-1) or SF6O2=5.50 gl(-1)) had no effect on expiratory valving. We suggest two possible mechanisms that might explain this unusual combination of how dependence without density dependence. (1) If airway geometry changes occurred between experiments with different gases, flow in the vicinity of the expiratory valve may have varied independently from flow measured at the airway opening. (2) Alternatively, valving may depend on dynamic compression of the intrapulmonary bronchus, which could depend mainly on viscous resistance and thus on flow velocity hut not gas density. [References: 31]
机译:通过禽肺的单向气流模式被认为是由“气动阀”产生的。对这一假设的支持主要在于未能找到任何有关解剖学瓣膜的证据。呼气期间,尾气囊中的空气如何通过肺的主要交换区域即古肺旁支气管,而不是通过肺内支气管绕过肺。我们测试了这种呼气流量控制机制的有效性是否取决于空气动力学因素,特别是取决于气体密度和流速的对流惯性力。在抽气通风,麻醉的鹅中,在末次吸气暂停期间将一团示踪气体引入左右尾胸部的胸囊中。在第一个有效期期间,测量了尾气管内示踪物水平的升高。瓣膜功效与呼气流速Vao(8-200 ml s(-1))呈正相关,假设在鹅运动过程中发生流量(VAO> 100 ml s(-1)),呼气瓣膜功效约为95%;在降低操作方式方面效果较差。令人惊讶地,背景气体的密度(p)(He / O-2的p = 0.43 gl(-1),Ar / O-2 = 1.72 gl(-1)或SF6O2 = 5.50 gl(-1))具有对呼气阀无影响。我们提出了两种可能的机制,它们可以解释这种不依赖密度而又不依赖密度的异常组合。 (1)如果在使用不同气体的实验之间气道几何发生变化,则呼气阀附近的流量可能会独立于气道开口处测得的流量而变化。 (2)或者,阀作用可能取决于肺内支气管的动态压缩,这可能主要取决于粘性阻力,因此取决于流速,而不取决于气体密度。 [参考:31]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号