首页> 外文期刊>The Journal of Physiology >Prolactin-releasing peptide affects gastric motor function in rat by modulating synaptic transmission in the dorsal vagal complex.
【24h】

Prolactin-releasing peptide affects gastric motor function in rat by modulating synaptic transmission in the dorsal vagal complex.

机译:催乳素释放肽通过调节背迷走神经复合体中的突触传递来影响大鼠的胃运动功能。

获取原文
获取原文并翻译 | 示例
           

摘要

Prolactin-releasing peptide (PrRP) is a recently discovered neuropeptide implicated in the central control of feeding behaviour and autonomic homeostasis. PrRP-containing neurones and PrRP receptor mRNA are found in abundance in the caudal portion of the nucleus tractus solitarius (NTS), an area which together with the dorsal motor nucleus of the vagus (DMV) comprises an integrated structure, the dorsal vagal complex (DVC) that processes visceral afferent signals from and provides parasympathetic motor innervation to the gastrointestinal tract. In this study, microinjection experiments were conducted in vivo in combination with whole-cell recording from neurones in rat medullary slices to test the hypothesis that PrRP plays a role in the central control of gastric motor function, acting within the DVC to modulate the activity of preganglionic vagal motor neurones that supply the stomach. Microinjection of PrRP (0.2 pmol (20 nl)(-1)) into the DMV at the level of the area postrema (+0.2 to +0.6 mm from the calamus scriptorius, CS) markedly stimulated gastric contractions and increased intragastric pressure (IGP). Conversely, administration of peptide into the DMV at sites caudal to the obex (0.0 to -0.3 mm from the CS) decreased IGP and reduced phasic contractions. These effects occurred without change in mean arterial pressure and were abolished by ipsilateral vagotomy, indicating mediation via a vagal-dependent mechanism(s). The pattern of gastric motor responses evoked by PrRP mimicked that produced by administration of L-glutamate at the same sites, and both the effects of L-glutamate and PrRP were abolished following local administration of NMDA and non-NMDA-type glutamate receptor antagonists. On the other hand, microinjection of PrRP into the medial or comissural nucleus of the solitary tract (mNTS and comNTS, respectively) resulted in less robust changes in IGP in a smaller percentage of animals, accompanied by marked alterations in arterial pressure. Superfusion of brain slices with PrRP (100-300 nm) produced a small depolarization and increased spontaneous firing in 10 of 30 retrogradely labelled gastric-projecting DMV neurones. The excitatory effects were blocked by administration of TTX (2 mum) or specific glutamate receptor antagonists, indicating that they resulted from interactions of PrRP at a presynaptic site. Congruent with this, PrRP increased the amplitude of excitatory postsynaptic currents (EPSCs, 154 +/- 33%, 12 of 25 neurones) evoked by electrical stimulation in mNTS or comNTS. In addition, administration of PrRP decreased the paired-pulse ratio of EPSCs evoked by two identical stimuli delivered 100 ms apart (from 0.95 +/- 0.08 to 0.71 +/- 0.11, P < 0.05), whereas it did not affect the amplitude of inward currents evoked by exogenous application of L-glutamate to the slice. The frequency, but not amplitude of spontaneous EPSCs and action potential-independent miniature EPSCs was also increased by administration of PrRP, suggesting that the peptide was acting at least in part at receptors on presynaptic nerve terminals to enhance glutamatergic transmission. In recordings obtained from a separate group of slices, we did not observe any direct effects of PrRP on spontaneous discharge or postsynaptic excitability in either mNTS or comNTS neurones (n = 31). These data indicate that PrRP may act within the DVC to regulate gastric motor function by modulating the efficacy of conventional excitatory synaptic inputs from the NTS onto gastric-projecting vagal motor neurones.
机译:催乳素释放肽(PrRP)是最近发现的一种神经肽,与进食行为和植物体内稳态的中央控制有关。在孤束核(NTS)的尾部大量发现含PrRP的神经元和PrRP受体mRNA,该区域与迷走神经的背运动核(DMV)一起构成一个完整的结构,即背迷走神经复合体( DVC)处理来自胃肠道的内脏传入信号,并向胃肠道提供副交感神经。在这项研究中,在体内进行了显微注射实验,并结合了大鼠髓质切片中神经元的全细胞记录,以检验以下假设:PrRP在胃动力功能的中央控制中起作用,在DVC内调节胃黏膜的活动。提供胃的神经节前迷走神经运动神经元。在ReMV后区域(距cal蒲,CS距+0.2至+0.6 mm)水平向DMV中微量注射PrRP(0.2 pmol(20 nl)(-1))明显刺激胃收缩并增加胃内压(IGP) 。相反,将肽施用到DMV的尾巴尾部(距离CS约0.0至-0.3 mm)可降低IGP并减少相收缩。这些作用的发生没有改变平均动脉压,并且被同侧迷走神经切断术消除了,表明通过迷走神经依赖性机制进行了介导。 PrRP引起的胃运动反应模式与在相同部位施用L-谷氨酸产生的胃运动反应模式相似,在局部施用NMDA和非NMDA型谷氨酸受体拮抗剂后,L-谷氨酸和PrRP的作用均被消除。另一方面,将PrRP显微注射到孤立道的内侧或汇合核(分别为mNTS和comNTS)会导致较小百分比的动物的IGP变弱,并伴有明显的动脉压改变。 PrRP(100-300 nm)对脑片的超融合在30个逆行标记的胃投射DMV神经元中有10个产生了小的去极化并增加了自发放电。给予TTX(2毫克)或特定的谷氨酸受体拮抗剂可阻断兴奋作用,表明它们是由突触前位点的PrRP相互作用引起的。与此对应的是,PrRP增加了电刺激在mNTS或comNTS中引起的兴奋性突触后突触电流(EPSC,154 +/- 33%,25个神经元中的12个)的幅度。此外,PrRP的给药降低了相距100 ms传递的两个相同刺激引起的EPSC的成对脉冲比率(从0.95 +/- 0.08降低到0.71 +/- 0.11,P <0.05),而没有影响外源性将L-谷氨酸施加到切片上引起的内向电流。施用PrRP也可增加自发EPSC和不依赖动作电位的微型EPSC的频率,但不增加其幅度,这表明该肽至少部分作用于突触前神经末梢的受体,以增强谷氨酸能传递。在从单独的一组切片中获得的录音中,我们没有观察到PrRP对mNTS或comNTS神经元(n = 31)中的自发放电或突触后兴奋性有任何直接影响。这些数据表明,PrRP可能在DVC中起作用,通过调节从NTS到胃投射迷走运动神经元的常规兴奋性突触输入的功效来调节胃运动功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号