...
首页> 外文期刊>The Journal of Physiology >Direct measurement of human ankle stiffness during quiet standing: the intrinsic mechanical stiffness is insufficient for stability.
【24h】

Direct measurement of human ankle stiffness during quiet standing: the intrinsic mechanical stiffness is insufficient for stability.

机译:在安静站立时直接测量人脚踝的刚度:固有的机械刚度不足以保持稳定性。

获取原文
获取原文并翻译 | 示例
           

摘要

During quiet standing the human 'inverted pendulum' sways irregularly. In previous work where subjects balanced a real inverted pendulum, we investigated what contribution the intrinsic mechanical ankle stiffness makes to achieve stability. Using the results of a plausible model, we suggested that intrinsic ankle stiffness is inadequate for providing stability. Here, using a piezo-electric translator we applied small, unobtrusive mechanical perturbations to the foot while the subject was standing freely. These short duration perturbations had a similar size and velocity to movements which occur naturally during quiet standing, and they produced no evidence of any stretch reflex response in soleus, or gastrocnemius. Direct measurement confirms our earlier conclusion; intrinsic ankle stiffness is not quite sufficient to stabilise the body or pendulum. On average the directly determined intrinsic stiffness is 91 +/- 23 % (mean +/- S.D.) of that necessary to provide minimal stabilisation. The stiffness wassubstantially constant, increasing only slightly with ankle torque. This stiffness cannot be neurally regulated in quiet standing. Thus we attribute this stiffness to the foot, Achilles' tendon and aponeurosis rather than the activated calf muscle fibres. Our measurements suggest that the triceps surae muscles maintain balance via a spring-like element which is itself too compliant to guarantee stability. The implication is that the brain cannot set ankle stiffness and then ignore the control task because additional modulation of torque is required to maintain balance. We suggest that the triceps surae muscles maintain balance by predictively controlling the proximal offset of the spring-like element in a ballistic-like manner.
机译:在安静站立时,人类的“倒立摆”不规则地摇摆。在以前的研究中,受试者平衡了真实的倒立摆,我们研究了固有的机械踝关节僵硬对实现稳定性的贡献。使用一个合理的模型的结果,我们建议固有的踝关节僵硬不足以提供稳定性。在这里,使用压电转换器,当对象自由站立时,我们在脚上施加了小的,无干扰的机械扰动。这些短时间的扰动具有与安静站立时自然发生的运动相似的大小和速度,并且没有产生比目鱼或腓肠肌任何拉伸反射反应的证据。直接测量证实了我们先前的结论;固有的踝关节刚度不足以稳定身体或摆锤。平均而言,直接确定的固有刚度是提供最小稳定度所需的刚度的91 +/- 23%(平均+/- S.D.)。刚度基本上是恒定的,仅随着脚踝扭矩而略有增加。在安静站立时无法通过神经调节这种刚度。因此,我们将这种僵硬归因于脚,跟腱和腱膜,而不是活化的小腿肌肉纤维。我们的测量结果表明,肱三头肌肌肉通过弹簧状元件保持平衡,而弹簧状元件本身太柔顺了,无法保证稳定性。这意味着大脑无法设置踝部僵硬,然后忽略控制任务,因为需要额外的扭矩调节来保持平衡。我们建议肱三头肌肱三头肌通过以弹道状方式预测性控制弹簧状元件的近端偏移来保持平衡。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号