首页> 外文期刊>The Journal of Physiology >Distinct roles for I(T) and I(H) in controlling the frequency and timing of rebound spike responses.
【24h】

Distinct roles for I(T) and I(H) in controlling the frequency and timing of rebound spike responses.

机译:I(T)和I(H)在控制反弹尖峰响应的频率和时间方面的不同作用。

获取原文
获取原文并翻译 | 示例
           

摘要

The ability for neurons to generate rebound bursts following inhibitory synaptic input relies on ion channels that respond in a unique fashion to hyperpolarization. Inward currents provided by T-type calcium channels (I(T)) and hyperpolarization-activated HCN channels (I(H)) increase in availability upon hyperpolarization, allowing for a rebound depolarization after a period of inhibition. Although rebound responses have long been recognized in deep cerebellar nuclear (DCN) neurons, the actual extent to which I(T) and I(H) contribute to rebound spike output following physiological levels of membrane hyperpolarization has not been clearly established. The current study used recordings and simulations of large diameter cells of the in vitro rat DCN slice preparation to define the roles for I(T) and I(H) in a rebound response. We find that physiological levels of hyperpolarization make only small proportions of the total I(T) and I(H) available, but that these are sufficient to make substantial contributions to a rebound response. At least 50% of the early phase of the rebound spike frequency increase is generated by an I(T)-mediated depolarization. An additional frequency increase is provided by I(H) in reducing the time constant and thus the extent of I(T) inactivation as the membrane returns from a hyperpolarized state to the resting level. An I(H)-mediated depolarization creates an inverse voltage-first spike latency relationship and produces a 35% increase in the precision of the first spike latency of a rebound. I(T) and I(H) can thus be activated by physiologically relevant stimuli and have distinct roles in the frequency, timing and precision of rebound responses.
机译:在抑制性突触输入后,神经元产生回弹爆发的能力取决于以独特方式对超极化反应的离子通道。 T型钙通道(I(T))和超极化激活的HCN通道(I(H))提供的内向电流在超极化时会增加可用性,在一段时间的抑制后允许反弹性去极化。尽管早在深小脑核(DCN)神经元中就已经认识到了反弹反应,但是在生理水平的膜超极化之后,I(T)和I(H)对反弹峰值输出的实际贡献程度尚不清楚。当前的研究使用体外大鼠DCN切片制备中大直径细胞的记录和模拟来定义I(T)和I(H)在反弹反应中的作用。我们发现生理水平的超极化仅使总I(T)和I(H)中的一小部分可用,但这些足以为反弹反应做出实质性贡献。反弹尖峰频率增加的早期至少50%是由I(T)介导的去极化产生的。当膜从超极化状态恢复到静止水平时,I(H)会减少频率常数,从而降低I(T)失活的程度,从而增加频率。 I(H)介导的去极化产生反电压-第一尖峰潜伏期关系,并使反弹的第一尖峰潜伏期的精度提高35%。因此,I(T)和I(H)可以被生理相关的刺激激活,并且在反弹反应的频率,时间和精确度上具有独特的作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号