首页> 外文期刊>The Journal of Physiology >Pressure-dependent regulation of Ca2+ signalling in the vascular endothelium
【24h】

Pressure-dependent regulation of Ca2+ signalling in the vascular endothelium

机译:血管内皮细胞中Ca2 +信号的压力依赖性调节

获取原文
获取原文并翻译 | 示例
           

摘要

The endothelium is an interconnected network upon which haemodynamic mechanical forces act to control vascular tone and remodelling in disease. Ca2+ signalling is central to the endothelium's mechanotransduction and networked activity. However, challenges in imaging Ca2+ in large numbers of endothelial cells under conditions that preserve the intact physical configuration of pressurized arteries have limited progress in understanding how pressure-dependent mechanical forces alter networked Ca2+ signalling. We developed a miniature wide-field, gradient-index (GRIN) optical probe designed to fit inside an intact pressurized artery that permitted Ca2+ signals to be imaged with subcellular resolution in a large number (similar to 200) of naturally connected endothelial cells at various pressures. Chemical (acetylcholine) activation triggered spatiotemporally complex, propagating inositol trisphosphate (IP3)-mediated Ca2+ waves that originated in clusters of cells and progressed from there across the endothelium. Mechanical stimulation of the artery, by increased intraluminal pressure, flattened the endothelial cells and suppressed IP3-mediated Ca2+ signals in all activated cells. By computationally modelling Ca2+ release, endothelial shape changes were shown to alter the geometry of the Ca2+ diffusive environment near IP3 receptor microdomains to limit IP3-mediated Ca2+ signals as pressure increased. Changes in cell shape produce a geometric microdomain regulation of IP3-mediated Ca2+ signalling to explain macroscopic pressure-dependent, endothelial mechano-sensing without the need for a conventional mechanoreceptor. The suppression of IP3-mediated Ca2+ signalling may explain the decrease in endothelial activity as pressure increases. GRIN imaging provides a convenient method that gives access to hundreds of endothelial cells in intact arteries in physiological configuration.
机译:内皮是一个相互连接的网络,血液动力学机械力作用在该网络上,以控制疾病中的血管张力和重塑。 Ca2 +信号传导是内皮机械传递和网络活动的核心。然而,在保持加压动脉完整物理形态的条件下,对大量内皮细胞中的Ca2 +进行成像方面的挑战在理解压力相关的机械力如何改变网络化的Ca2 +信号传递方面进展有限。我们开发了一种微型宽视野梯度指数(GRIN)光学探针,该探针设计用于安装在完整的加压动脉内,该动脉可以使Ca2 +信号以亚细胞分辨率在各种自然连接的内皮细胞中以各种亚细胞分辨率成像(在200种情况下)压力。化学(乙酰胆碱)活化触发时空复杂,传播肌醇三磷酸(IP3)介导的Ca2 +波,其起源于细胞簇并从那里穿过内皮细胞发展。通过增加腔内压力对动脉进行机械刺激,可使内皮细胞扁平化,并抑制所有活化细胞中IP3介导的Ca2 +信号。通过计算建模的Ca2 +释放,显示内皮形状的变化可改变IP3受体微域附近Ca2 +扩散环境的几何形状,从而随着压力的增加限制IP3介导的Ca2 +信号。细胞形状的变化产生了IP3介导的Ca2 +信号传导的几何微域调节,从而无需常规的机械感受器即可解释宏观压力依赖性的内皮机械感测。 IP3介导的Ca2 +信号传导的抑制可能解释了内皮活性随压力增加而降低。 GRIN成像提供了一种方便的方法,该方法可以以生理状态访问完整动脉中的数百个内皮细胞。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号