首页> 外文期刊>The Journal of Physiology >Tryptophan-scanning mutagenesis in the S1 domain of mammalian HCN channel reveals residues critical for voltage-gated activation.
【24h】

Tryptophan-scanning mutagenesis in the S1 domain of mammalian HCN channel reveals residues critical for voltage-gated activation.

机译:哺乳动物HCN通道S1域中的色氨酸扫描诱变揭示了对电压门控激活至关重要的残基。

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are essential regulators in rhythmic activity, membrane excitability and synaptic transmission. There are four subtypes in mammals (HCN1-4); HCN4 has the slowest activation kinetics and HCN1 the fastest. Although voltage gating originates with the voltage-dependent motion of the S4 segment, the different activation kinetics between HCN1 and HCN4 are generated mainly by S1 and the S1-S2 loop. In this study, we investigate the structural basis of the ability of S1 to affect activation kinetics by replacing each individual S1 residue in HCN1 with a tryptophan (Trp) residue, a Trp perturbation scan. Robust currents were generated in 11 out of 19 Trp mutants. Hyperpolarization-activated currents were not detected in four mutants, and two other mutants generated only small currents. Presence or absence of current reflected the predicted alpha-helical structure of the S1 transmembrane segment. Tryptophan replacements of residues responsible for the different kinetics between HCN1 and HCN4 made the activation kinetics slower than the wild-type HCN1. Tryptophan mutations introduced in the middle of S1 (L139W and V143W) prevented normal channel closure. Furthermore, a negatively charged residue at position 139 (L139D) induced a positive voltage shift of activation by 125 mV. Thus, L139 and V143 probably face a mobile part of the S4 voltage sensor and may interact with it. These results suggest that the secondary structure of S1 is alpha-helical and profoundly affects the motion of the voltage sensor.
机译:超极化激活的环状核苷酸门控(HCN)通道是节律性活动,膜兴奋性和突触传递的重要调节剂。哺乳动物有四种亚型(HCN1-4); HCN4的激活动力学最慢,HCN1的最快。尽管电压门控起源于S4段的电压相关运动,但HCN1和HCN4之间的激活动力学不同主要是由S1和S1-S2回路产生的。在这项研究中,我们通过用色氨酸(Trp)残基(Trp扰动扫描)替换HCN1中的每个单独的S1残基来研究S1影响激活动力学的能力的结构基础。在19个Trp突变体中,有11个产生了强大的电流。在四个突变体中未检测到超极化激活的电流,另外两个突变体仅产生小电流。电流的存在与否反映了S1跨膜片段的预测α-螺旋结构。负责HCN1和HCN4之间不同动力学的残基的色氨酸置换使活化动力学比野生型HCN1慢。在S1中部引入的色氨酸突变(L139W和V143W)阻止了正常的通道关闭。此外,位置139(L139D)上带负电荷的残留物会引起125 mV的激活正电压偏移。因此,L139和V143可能面向S4电压传感器的活动部件,并可能与其相互作用。这些结果表明,S1的二级结构为α螺旋形,并深刻影响电压传感器的运动。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号