...
首页> 外文期刊>The Journal of the Acoustical Society of America >Pore scale numerical modeling of elastic wave dispersion and attenuation in periodic systems of alternating solid and viscous fluid layers
【24h】

Pore scale numerical modeling of elastic wave dispersion and attenuation in periodic systems of alternating solid and viscous fluid layers

机译:固体和粘性流体层交替周期系统中弹性波扩散和衰减的孔尺度数值模拟。

获取原文
获取原文并翻译 | 示例
           

摘要

Numerical pore-scale simulation of elastic wave propagation is an emerging tool in the analysis of static and dynamic elastic properties of porous materials. Rotated staggered-grid (RSG) finite difference method has proved to be particularly effective in modeling porous media saturated with ideal fluids. Recently this method has been extended to viscoelastic (Maxwell) media, which allows simulation of wave propagation in porous solids saturated with Newtonian fluids. To evaluate the capability of the viscoelastic RSG algorithm in modeling wave dispersion and attenuation we perform numerical simulations for an idealized porous medium, namely a periodic system of alternating solid and viscous fluid layers. Simulations are performed for a single frequency of 50 kHz (for shear waves) and 500 kHz (for compressional waves) and a large range of fluid viscosities. The simulation results show excellent agreement with the theoretical predictions. Specifically the simulations agree with the prediction of Biot's theory of poroelasticity at lower viscosities and with the viscoelastic dissipation at higher viscosities. The finite-difference discretization is required to be sufficiently fine for the appropriate sampling of the viscous boundary layer to achieve accurate simulations at the low values of viscosity. This is an additional accuracy condition for finite-difference simulations in viscoelastic media. (c) 2006 Acoustical Society of America.
机译:弹性波传播的孔隙度数值模拟是分析多孔材料静态和动态弹性特性的新兴工具。事实证明,旋转交错网格(RSG)有限差分方法在模拟充满理想流体的多孔介质方面特别有效。最近,该方法已扩展到粘弹性(Maxwell)介质,该介质可以模拟在牛顿流体饱和的多孔固体中的波传播。为了评估粘弹性RSG算法在建模波扩散和衰减中的能力,我们对理想化的多孔介质(即,交替的固体和粘性流体层的周期性系统)进行了数值模拟。针对50 kHz(对于剪切波)和500 kHz(对于压缩波)的单个频率以及大范围的流体粘度执行仿真。仿真结果与理论预测吻合良好。具体而言,这些模拟与Biot在较低粘度下的多孔弹性理论的预测以及在较高粘度下的粘弹性耗散理论相一致。对于粘性边界层的适当采样,要求有限差分离散化足够精细,以在低粘度值下实现精确的模拟。这是粘弹性介质中有限差分模拟的另一个精度条件。 (c)2006年美国声学学会。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号