首页> 外文期刊>The Knee >Regression relationships of landing height with ground reaction forces, knee flexion angles, angular velocities and joint powers during double-leg landing.
【24h】

Regression relationships of landing height with ground reaction forces, knee flexion angles, angular velocities and joint powers during double-leg landing.

机译:双腿着陆过程中着陆高度与地面反作用力,膝盖弯曲角度,角速度和关节力量的回归关系。

获取原文
获取原文并翻译 | 示例
           

摘要

Ground reaction forces (GRF), knee flexion angles, angular velocities and joint powers are unknown at large landing heights, which are infeasible for laboratory testing. However, this information is important for understanding lower extremity injury mechanisms. We sought to determine regression relationships of landing height with these parameters during landing so as to facilitate estimation of these parameters at large landing heights. Five healthy male subjects performed landing tasks from heights of 0.15-1.05 m onto a force-plate. Motion capture system was used to obtain knee flexion angles during landing via passive markers placed on the lower body. An iterative regression model, involving simple linear/exponentialatural logarithmic functions, was used to fit regression equations to experimental data. Peak GRF followed an exponential regression relationship (R(2)=0.90-0.99, p<0.001; power=0.987-0.998). Peak GRF slope and impulse also had an exponential relationship (R(2)=0.90-0.96, p<0.001; power=0.980-0.997 and R(2)=0.90-0.99, p<0.001; power=0.990-1.000 respectively) with landing height. Knee flexion angle at initial contact and at peak GRF had an inverse-exponential regression relationship (R(2)=0.81-0.99, p<0.001-p=0.006; power=0.834-0.978 and R(2)=0.84-0.97, p<0.001-p=0.004; power=0.873-0.999 respectively). There was also an inverse-exponential relationship between peak knee flexion angular velocity and landing height (R(2)=0.86-0.96, p<0.001; power=0.935-0.994). Peak knee joint power demonstrated a substantial linear relationship (R(2)=0.98-1.00, p<0.001; power=0.990-1.000). The parameters analyzed in this study are highly dependent on landing height. The exponential increase in peak GRF parameters and the relatively slower increase in knee flexion angles, angular velocities and joint power may synergistically lead to an exacerbated lower extremity injury risk at large landing heights.
机译:在较大的着陆高度时,地面反作用力(GRF),膝盖弯曲角度,角速度和关节力量未知,这对于实验室测试是不可行的。但是,此信息对于理解下肢损伤机制很重要。我们试图确定着陆高度与这些参数在着陆过程中的回归关系,以便于在大着陆高度估计这些参数。五名健康​​的男性受试者在0.15-1.05 m的高度上执行了着陆任务,并将其放在了测力板上。运动捕获系统用于通过放置在下半身的被动标记来获得着陆期间的膝盖屈曲角度。涉及简单线性/指数/自然对数函数的迭代回归模型用于将回归方程拟合到实验数据。峰值GRF遵循指数回归关系(R(2)= 0.90-0.99,p <0.001;功效= 0.987-0.998)。峰值GRF斜率和脉冲也具有指数关系(R(2)= 0.90-0.96,p <0.001;幂= 0.980-0.997和R(2)= 0.90-0.99,p <0.001;幂= 0.990-1.000)着陆高度。初次接触和GRF峰值时的膝关节屈曲角度具有反指数回归关系(R(2)= 0.81-0.99,p <0.001-p = 0.006;屈光度= 0.834-0.978和R(2)= 0.84-0.97, p <0.001-p = 0.004;功效分别为0.873-0.999)。峰值膝关节屈曲角速度与着地高度之间也存在反指数关系(R(2)= 0.86-0.96,p <0.001;屈光度= 0.935-0.994)。峰值膝关节屈光度显示出基本的线性关系(R(2)= 0.98-1.00,p <0.001;屈光度= 0.990-1.000)。在这项研究中分析的参数高度依赖着陆高度。 GRF峰值参数的指数增加和膝盖屈曲角度,角速度和关节力量的相对较慢的增加可能会协同导致在大着陆高度下肢下肢受伤的危险加剧。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号