首页> 外文期刊>The New Phytologist >Isotope discrimination provides new insight into biological nitrogen fixation
【24h】

Isotope discrimination provides new insight into biological nitrogen fixation

机译:同位素识别为生物固氮提供了新见识

获取原文
获取原文并翻译 | 示例
           

摘要

Biological N2 fixation, the assimilation of atmospheric N2 into NH3, is the province of highly specialized microorganisms, and a key entry point for atmospheric nitrogen (N) into terrestrial ecosystems (Vitousek etal, 2002). It is probably the most important biologically mediated process after photosynthesis, and is universally carried out by the enzyme nitrogenase. Collectively, N2 fixing organisms are termed diazotrophs, some of which can fix N2 in a 'free-living' state, while others fix N2 in loose association with plants, and a select few in highly evolved, complex symbioses on plant roots or stems. Despite its importance, physiological control of biological N2 fixation is only partially understood and quantification of N2 fixation at the fieldlevel is difficult (Unkovich et al, 2008). Further progress in quantifying N cycle fluxes in ecosystems will rely heavily on stable isotope (l3N) investigations. These powerful techniques can be used at scales ranging from cell to globe (Vandover et al,1992; Robinson, 2001; Werner & Schmidt, 2002), but require an understanding of the isotope discrimination associated with N transformations. Generally, compounds containing the lighter of two isotopes react more quickly, resulting in reaction products being isotopically lighter than the substrate, unless all of the substrate is converted to the product (Dawson & Brooks, 2001). In the case of biological N2 fixation this equates to differences in the relative abundance of the stable isotopes 15N and l4N between atmospheric N2 and the fixed NH3 produced by the nitrogenase enzyme in the diazotroph. Natural N isotope abundances (delta 15N) are expressed as a parts per thousand (%o) deviation from the 15N composition of atmospheric N2 (0%o) (Mariotti, 1983)and thus one might anticipate fixed NH3 to have a negative delta l3N given that the N2 fixation substrate substrate (N2) would be in unlimited supply and one would anticipate preferential reduction of 'N 'N (mass 28) over 'N 'N (mass 29) or 15N15N (mass30). The aim of the present paper is to highlight uncertainties surrounding the extent of isotope fractionation associated with N2 fixation, and to provide a possible working framework for interpretation of the available data.
机译:生物固氮,即大气中的氮向氨的吸收,是高度专业化的微生物,也是大气中的氮进入陆地生态系统的关键入口(Vitousek等,2002)。它可能是光合作用后最重要的生物学介导过程,通常由固氮酶进行。固定氮的生物统称为重氮菌,其中一些可以将N2固定为“自由生活”状态,而另一些可以将N2固定在与植物的松散结合中,而少数几个可以在植物的根或茎上以高度进化的复杂共生体固定。尽管其重要性,但对生物固氮的生理控制仅部分了解,并且在田间水平难以定量固氮(Unkovich等,2008)。量化生态系统中N循环通量的进一步进展将在很大程度上依赖于稳定同位素(l3N)研究。这些强大的技术可以在从细胞到地球的范围内使用(Vandover等,1992; Robinson,2001; Werner&Schmidt,2002),但需要了解与N转化有关的同位素歧视。通常,包含两种同位素中较轻者的化合物反应更快,导致同位素上的反应产物比底物轻,除非所有底物都转化为产物(Dawson&Brooks,2001)。在生物固氮的情况下,这等同于大气N2与重氮营养中固氮酶产生的固定NH3之间的稳定同位素15N和14N的相对丰度差异。天然N同位素丰度(δ15N)表示为与大气N2的15N成分(0%o)的千分之几(%o)(Mariotti,1983),因此人们可能会预测固定的NH3具有负δ13N假设N2固定基板基板(N2)将无限制供应,并且人们期望'N'N(质量28)优先于'N'N(质量29)或15N15N(质量30)减少。本文的目的是强调与N2固定相关的同位素分级分离程度的不确定性,并为解释可用数据提供可能的工作框架。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号