首页> 外文期刊>The New Phytologist >New insights into bordered pit structure and cavitation resistance in angiosperms and conifers
【24h】

New insights into bordered pit structure and cavitation resistance in angiosperms and conifers

机译:对被子植物和针叶树中具缘纹的坑结构和抗气蚀性的新见解

获取原文
获取原文并翻译 | 示例
           

摘要

The question of what structural features underlie differences in resistance to xylem cavitation is a long-standing issue fundamental to our understanding of water transport in plants. Plants routinely face xylem tensions great enough to cause cavitation and embolism, which may result in significantly increased hydraulic resistance, limitations on leaf gas exchange and ultimately carbon starvation and plant death (Tyree & Zimmermann, 2002; McDowell et al., 2008). The relative resistance of a plant toembolism is a major determinant of species distribution and the ability of plants to survive in the face of environmental stresses such as drought and freezing (Stuart et al., 2007). The xylem consists of a highly compartmentalized network of conduits inwhich emboli can be isolated while water transport continues in adjacent conduits. The continued function of this network depends to a large degree on the nano-porous primary cell walls (pit membranes) that separate conduits from one another. Pit membranes function as safety valves in the xylem, allowing the free passage of water between cells as it moves from the roots to the leaves, but limiting the spread of gas or pathogens. However, the fine porosity of pit membranes also results in significant hydraulic resistance, with pit hydraulic resistance accounting for a large proportion of total xylem hydraulic resistance (Zwieniecki et al., 2001; Choat et al., 2006). The structure and function of pit membranes is therefore of great importance in both the hydraulic efficiency of the xylem and cavitation resistance (Choat et al., 2008). Although there is a great breadth of diversity in bordered pit structure across higher plants, pit membranes can generally be divided into two major forms: homogeneous pit membranes, typical of angiosperm species; and margo–torus pit membranes of tracheid-bearing conifers (Fig. 1). In this issue of New Phytologist, two exciting studies extend our understanding of the relationship between xylem structure and resistance to cavitation: Christman et al. (2009, pp. 664–674) examine the anatomical underpinning of cavitation resistance in angiosperm species, while Hacke & Jansen (2009, pp. 675–686) report a detailed investigation of margo–torus pit structure and its influence on cavitation resistance in three conifer species.
机译:关于木质部气蚀抵抗力差异的基础是什么结构特征的问题是我们了解植物中水运输的基础长期存在的问题。植物通常面临足以引起气蚀和栓塞的木质部张力,这可能导致水力阻力显着增加,限制叶片气体交换并最终导致碳饥饿和植物死亡(Tyree&Zimmermann,2002; McDowell等,2008)。植物对栓塞的相对抗性是物种分布和植物在环境压力(例如干旱和冰冻)下生存的能力的主要决定因素(Stuart等,2007)。木质部由高度分隔的导管网络组成,可以在其中隔离栓子,同时在相邻导管中继续进行水传输。该网络的持续功能在很大程度上取决于将导管彼此分隔开的纳米多孔原代细胞壁(凹膜)。坑膜在木质部中起着安全阀的作用,当水从根部移动到叶片时,允许水在细胞之间自由通过,但限制了气体或病原体的扩散。但是,凹坑膜的微孔性也导致了显着的水力阻力,而凹坑水力阻力占木质部总水力阻力的很大一部分(Zwieniecki等,2001; Choat等,2006)。因此,坑膜的结构和功能在木质部的水力效率和抗气蚀性方面都非常重要(Choat等,2008)。尽管高等植物的有缘纹孔结构有很大的多样性,但纹孔膜通常可分为两种主要形式:均匀的纹孔膜,典型的被子植物。含气管针叶树的马戈-托鲁斯坑膜(图1)。在本期《新植物学家》中,两项激动人心的研究扩展了我们对木质部结构与抗气蚀性之间关系的理解:Christman等。 (2009,pp。664–674)研究了被子植物中抗气蚀性的解剖基础,而Hacke&Jansen(2009,pp。675–686)报告了对马格托鲁斯坑结构及其对耐空蚀性的影响的详细研究。三种针叶树种。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号