...
首页> 外文期刊>The Journal of Prosthetic Dentistry >Effect of cross-sectional design on the modulus of elasticity and toughness of fiber-reinforced composite materials.
【24h】

Effect of cross-sectional design on the modulus of elasticity and toughness of fiber-reinforced composite materials.

机译:横截面设计对纤维增强复合材料的弹性模量和韧性的影响。

获取原文
获取原文并翻译 | 示例

摘要

STATEMENT OF PROBLEM: Many current fabrication protocols for dental fiber-reinforced composites use hand lay-up techniques and technician design input. Little information exists regarding how the manipulation of the cross-sectional design of a prosthesis might affect the modulus of elasticity and toughness. PURPOSE: The aim of this study was to determine the effect of simple and complex cross-sectional designs on the modulus of elasticity and toughness of fiber-reinforced composite used for dental prostheses. MATERIAL AND METHODS: Two particulate composites (BelleGlass HP and Targis) were reinforced with ultra-high-molecular-weight polyethylene fiber ribbon (Connect), woven E-glass fibers (Vectris Frame), or unidirectional R-glass fibers (Vectris Pontic). A range of fiber positions, orientations, or geometries were incorporated into the rhombic specimens (2 x 2 x 25 mm(3)) to achieve simple and complex experimental cross-sectional designs. The control specimen did not contain fiber reinforcement. Specimens (n=6) were stored 1 week in distilled water at 37 degrees C prior to 3-point load testing to determine the modulus of elasticity (GPa) and toughness (MPa). The data within each main fiber group were subjected to 1-way analysis of variance and a Tukey post hoc test (alpha=.05). Cross-sections of randomly selected test specimens (n=2) were made for scanning electron microscope (SEM) analysis of the fiber distribution. RESULTS: The mean modulus of elasticity varied from 8.7 +/- 2.0 GPa (Targis control) to 21.6 +/- 1.4 GPa (2 unidirectional glass fiber reinforcements, 1 each at the tension side and the compression side). Mean toughness varied from 0.07 +/- 0.02 MPa (unidirectional glass fiber positioned at the compression side) as the lowest mean, to 4.53 +/- 0.89 MPa (unidirectional glass fiber positioned at the tension side) as the highest. Significant differences were identified between specimen groups in each main category (all groups P<.001, except modulus of elasticity of the woven E-glass groups,where P=.003). SEM micrographs showed fiber distribution in the cross section of test specimens to correspond with the intended fiber geometry. CONCLUSION: The modulus of elasticity of the composite specimens increased when 1 or more glass fiber groups were located at the compression side of the specimen. Toughness was most effectively increased when 1 or more fiber groups were located at the tension side of the specimen.
机译:问题陈述:当前许多用于牙科纤维增强复合材料的制造方案都使用手工敷设技术和技术人员的设计意见。关于操纵假体的横截面设计如何影响弹性模量和韧性的信息很少。目的:本研究的目的是确定简单和复杂的横截面设计对用于牙修复体的纤维增强复合材料的弹性模量和韧性的影响。材料与方法:两种颗粒复合材料(BelleGlass HP和Targis)用超高分子量聚乙烯纤维带(Connect),编织的E玻璃纤维(Vectris框架)或单向R玻璃纤维(Vectris Pontic)增强。 。将一定范围的纤维位置,方向或几何形状合并到菱形标本(2 x 2 x 25 mm(3))中,以实现简单和复杂的实验横截面设计。对照样品不包含纤维增强材料。在进行三点载荷测试之前,将样品(n = 6)在37摄氏度的蒸馏水中保存1周,以确定弹性模量(GPa)和韧性(MPa)。对每个主要纤维组内的数据进行方差单向分析和Tukey post hoc检验(alpha = .05)。制成随机选择的试样(n = 2)的横截面,以用于纤维分布的扫描电子显微镜(SEM)分析。结果:平均弹性模量从8.7 +/- 2.0 GPa(Targis控制)到21.6 +/- 1.4 GPa(2个单向玻璃纤维增​​强材料,在拉伸侧和压缩侧各1个)变化。平均韧性从最低的平均值0.07 +/- 0.02 MPa(位于压缩侧的单向玻璃纤维)到最高的平均韧性至4.53 +/- 0.89 MPa(位于拉伸侧的单向玻璃纤维)。在每个主要类别的标本组之间都发现了显着差异(所有组P <.001,但机织E-玻璃组的弹性模量除外,其中P = .003)。 SEM显微照片显示,纤维在试样横截面中的分布与预期的纤维几何形状相对应。结论:当1组或多组玻璃纤维位于压缩侧时,复合材料的弹性模量增加。当1个或多个纤维组位于样品的张力侧时,韧性最有效地提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号