...
首页> 外文期刊>The journal of physics and chemistry of solids >High surface area monodispersed Fe3O4 nanoparticles alone and on physical exfoliated graphite for improved supercapacitors
【24h】

High surface area monodispersed Fe3O4 nanoparticles alone and on physical exfoliated graphite for improved supercapacitors

机译:高表面积单分散Fe3O4纳米颗粒,以及在物理剥离石墨上的纳米颗粒,可改善超级电容器的性能

获取原文
获取原文并翻译 | 示例

摘要

Highly conductive, unsophisticated and easy to be obtained physical exfoliated graphite (PHG) supporting well dispersed magnetite, Fe3O4/PHG nanocomposite, has been prepared by a one-step chemical strategy and physico-chemical characterized. The nanocomposite, favoured by the a-polar nanoparticles (NPs) capping, results in a self-assembled monolayer of monodispersed Fe3O4, covering perfectly the hydrophobic surfaces of PHG. The nanocomposite as an electrode material was fabricated into a super capacitor and characterized by cyclic voltammetry (CV) and galvanostatic charge-discharge measurements. It shows, after a suitable annealing, significant electrochemical properties (capacitance value of 787 F/g at 0.5 A g(-1) and a Fe3O4/PHG weight ratio of 031) and good cycling stability (retention 91% after 30,000 cycles). Highly monodispersed very fine Fe3O4 NPs, covered by organic chains, have been also synthesized. The high surface area Fe3O4 NPs, after washing to leave a low content of organic chains able to avoid aggregation without excessively affecting the electrical properties of the material, exhibit remarkable pseudocapacitive activities, including the highest specific capacitance over reported for Fe3O4 (300 F/g at 0.5 A g(-1)). (C) 2016 Elsevier Ltd. All rights reserved.
机译:已经通过一步化学方法和物理化学方法制备了高导电性,不复杂且易于获得的,支持良好分散磁铁矿的Fe3O4 / PHG纳米复合物的物理脱落石墨(PHG)。纳米复合材料受到a极性纳米颗粒(NPs)封端的青睐,形成了自组装的单分散Fe3O4单层,完美覆盖了PHG的疏水表面。将纳米复合材料作为电极材料制成超级电容器,并通过循环伏安法(CV)和恒电流充放电测量对其进行表征。它显示出,经过适当的退火后,具有显着的电化学性能(在0.5 A g(-1)下的电容值为787 F / g,Fe3O4 / PHG的重量比为031)和良好的循环稳定性(30,000次循环后保留91%)。还合成了高度单分散的非常细的Fe3O4 NP,这些NPs被有机链覆盖。高表面积的Fe3O4纳米颗粒经过清洗后留下的有机链含量低,可以避免聚集而不会过度影响材料的电性能,表现出显着的拟电容活性,包括比报道的Fe3O4最高的比电容(300 F / g在0.5 A g(-1)下)。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号