...
首页> 外文期刊>The journal of physics and chemistry of solids >Grain size effects on the compressibility and yield strength of copper
【24h】

Grain size effects on the compressibility and yield strength of copper

机译:晶粒度对铜的可压缩性和屈服强度的影响

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

A comparative investigation on mechanical properties of micro- and nano-sized polycrystalline copper (Cu) under high pressure and temperature (high P-T) up to 9.1 GPa and 1150 K has been conducted in a single experimental run using in-situ synchrotron X-ray diffraction integrated with the high pressure technique. We derived the bulk moduli for both samples from the least-squares fitting of measured pressure-volume (P-V) data by a second-order Birch-Murnaghan equation of state (EOS). The results reveal that in the present study grain sizes negligibly affect the compressibility of Cu. Furthermore, we investigated the deformation of samples under high P-T conditions. At high pressure and room temperature, both local/micro and bulk/macro yielding points are observed in the elastic stage of nano-sized Cu. By contrast, micro-sized Cu demonstrates only a bulk yielding point over its entire elastic regime. At high temperature and fixed pressure, both samples exhibit stress relaxation, grain growth, and finally reach an identical status. Based on the peak-width analysis of diffraction profiles and subsequent graphic derivation, the yield strengths are determined to be 0.17±0.05 GPa and 0.75±0.07 GPa for micro- and nano-sized grains, respectively, which indicates a substantial enhancement of yield strength in Cu by nanocrystals.
机译:使用原位同步加速器X射线在单个实验中对微米和纳米级多晶铜(Cu)在高达9.1 GPa和1150 K的高压和高温(高PT)下的力学性能进行了比较研究衍射与高压技术结合在一起。我们通过二阶Birch-Murnaghan状态方程(EOS)从测得的压力-体积(P-V)数据的最小二乘拟合中得出了两个样品的体积模量。结果表明,在本研究中,晶粒尺寸对铜的可压缩性影响可忽略不计。此外,我们研究了在高P-T条件下样品的变形。在高压和室温下,在纳米级铜的弹性阶段观察到局部/微观和宏观/宏观屈服点。相比之下,微米级的Cu仅在其整个弹性范围内显示出大的屈服点。在高温和固定压力下,两个样品均显示出应力松弛,晶粒长大并最终达到相同的状态。根据衍射图谱的峰宽分析和随后的图形推导,确定微米级和纳米级晶粒的屈服强度分别为0.17±0.05 GPa和0.75±0.07 GPa,这表明屈服强度显着提高在铜中被纳米晶体。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号