...
首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Structure-activity-stability relationships of Pt-Co alloy electrocatalysts in gas-diffusion electrode layers
【24h】

Structure-activity-stability relationships of Pt-Co alloy electrocatalysts in gas-diffusion electrode layers

机译:扩散电极层中Pt-Co合金电催化剂的结构-活性-稳定性关系

获取原文
获取原文并翻译 | 示例

摘要

We establish relationships between the atomic structure, composition, electrocatalytic activity, and electrochemical corrosion stability of carbon-supported Pt-Co alloy nanoparticles in electrode catalyst layers. These Pt-Co catalysts have received much attention for use as cathode layers in polymer electrolyte membrane fuel cells (PEMFCs) because of their favorable oxygen-reduction-reaction (ORR) activity and suspected corrosion stability. We reported an enhancement of activity of low-temperature Pt50Co50 of 3 times that of pure carbon supported Pt catalysts. The use of synchrotron X-ray diffraction has enabled structural characterization of the alloy nanoparticles both before and, importantly, after electrocatalysis under fuel cell like conditions. From this, a detailed picture of the relative activity and stability of Pt-Co alloy phases as a function of synthesis conditions has emerged. We have investigated the structure, composition, chemical ordering, and concentration of Pt-Co alloy phases in (i) a dry, freshly synthesized nanoparticle catalyst, (ii) the catalytic electrode layer in a proton-conducting polymer electrolyte before electrocatalytic activity, and (iii) the same electrode layer after electrocatalytic activity. We find that Pt50Co50 catalysts annealed at 600 degrees C consist of multiple phases: a chemically ordered face-centered tetragonal (fct) and two chemically disordered face-centered cubic (fcc) phases with differing stoichiometries. The Co-rich fcc phase suffers from corrosive Co loss during the preparation of conducting polymer electrode layers and, more significantly, during the ORR electrocatalysis. Most importantly, these fcc phases exhibit high catalytic activities for ORR (about 3x compared to a pure Pt electrocatalyst). Pt50Co50 catalysts annealed at 950 degrees C consist mainly of the fct Pt50Co50 phase. This phase shows favorable stability to corrosion in the conducting polymer electrode and during electrocatalysis, as the relative intensities of fcc(111)/fct(101) peak ratio remained consistently around 0.5 before and after preparation of conducting polymer electrode layers and before and after electrochemical measurements; however, it exhibits a lower catalytic ORR activity compared to the low-temperature fcc alloy phases (about 2.5x compared to a pure Pt electrocatalyst). Our results demonstrate the complexity in these multiphase materials with respect to catalyst activity and degradation. By understanding of the relationships between crystallographic phase, chemical ordering, composition, and the resulting electrochemical activity and corrosion stability of fuel cell catalysts within polymer-electrolyte/catalyst composites, we can move toward the rational design of active and durable catalyst materials for PEMFC electrodes.
机译:我们建立了电极催化剂层中碳载Pt-Co合金纳米粒子的原子结构,组成,电催化活性和电化学腐蚀稳定性之间的关系。这些Pt-Co催化剂由于其良好的氧还原反应(ORR)活性和可疑的腐蚀稳定性,因此在聚合物电解质膜燃料电池(PEMFC)中用作阴极层备受关注。我们报道了低温Pt50Co50活性的提高是纯碳负载Pt催化剂的3倍。同步加速器X射线衍射的使用使得在燃料电池状条件下进行电催化之前和之后,重要的是能够对合金纳米颗粒进行结构表征。由此,出现了Pt-Co合金相的相对活性和稳定性作为合成条件的函数的详细情况。我们已经研究了(i)干燥,新鲜合成的纳米颗粒催化剂,(ii)质子传导聚合物电解质中的催化电极层在电催化活性之前的Pt-Co合金相的结构,组成,化学有序性和浓度。 (iii)电催化活性后的相同电极层。我们发现,在600摄氏度下退火的Pt50Co50催化剂由多个相组成:一个化学有序的以面心为中心的四方相(fct)和两个具有不同化学计量比的化学无序的以面心为中心的立方(fcc)相。富Co的fcc相在导电聚合物电极层的制备过程中,尤其是在ORR电催化过程中,会遭受腐蚀性的Co损失。最重要的是,这些fcc相显示出对ORR的高催化活性(与纯Pt电催化剂相比约为3倍)。在950摄氏度下退火的Pt50Co50催化剂主要由fct Pt50Co50相组成。该相在导电聚合物电极层中和电催化过程中显示出对腐蚀的有利稳定性,因为在制备导电聚合物电极层之前和之后以及电化学前后,fcc(111)/ fct(101)峰值比的相对强度始终保持在0.5左右测量;但是,与低温的fcc合金相相比,它显示出较低的催化ORR活性(与纯Pt电催化剂相比,约为2.5倍)。我们的结果证明了这些多相材料在催化剂活性和降解方面的复杂性。通过了解结晶相,化学有序性,组成以及在聚合物-电解质/催化剂复合物中燃料电池催化剂产生的电化学活性和腐蚀稳定性之间的关系,我们可以朝着PEMFC电极的活性和耐用催化剂材料的合理设计方向发展。 。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号