首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Theoretical and Experimental Studies on Reaction Mechanism for Aerobic Alcohol Oxidation by Supported Ruthenium Hydroxide Catalysts
【24h】

Theoretical and Experimental Studies on Reaction Mechanism for Aerobic Alcohol Oxidation by Supported Ruthenium Hydroxide Catalysts

机译:负载型氢氧化钌催化剂催化好氧醇氧化反应机理的理论和实验研究

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The experimentally proposed reaction mechanism for the aerobic alcohol oxidation by supported ruthenium hydroxide catalysts (Ru(OH)_x/support, support = TiO2 or Al2O3) is theoretically investigated by means of ab initio quantum chemistry calculations with model catalysts "Ru(OH)3(OH2)3" and "RuCl3(OH2)3" for Ru(OH)_x/ support and RuCl_x/support, respectively. The experimentally proposed alcoholate formation and β-hydride elimination steps can be verified. In the case of 2-butanol (as a model substrate), the calculated activation energy for the alcoholate formation step with Ru(OH)3(OH2)3 (27.7 kJ mol~(-1)) is much smaller than that with RuCl3(OH2)3 (123.2 kJ mol~(-1)), showing that the alcoholate formation with Ru(OH)_x/support much more easily proceeds than that with RuCl_x/support. The Ru(OH)_x/support catalysts possess both Lewis acid (Ru center) and Br0nsted base (OFT species) sites on the same metal site. Therefore, the alcoholate formation step can be promoted by the "concerted activation" of an alcohol by the Lewis acid (electron transfer from an alcohol to Ru) and Br0nsted base (electron transfer from OH~- to a hydroxyl proton) sites on Ru(OH)_x/support. For the reaction of the hydride species with O2, the coordination of the electron-donating ligands (in particular, an alcohol and OH2) to form the six-coordinated ruthenium monohydride (Ru—H) species is a key to promote the O2 insertion to the hydride species. The electron donation from the ligands to the hydride species can make the Ru-H bond weaker, resulting in lowering the activation energy for the O2 insertion step. Finally, the alcoholate or hydroxide species is regenerated with the formation of H2O2, and the catalytic cycle is completed.
机译:从理论上通过模型催化剂“ Ru(OH)3的从头算量子化学计算,研究了负载的氢氧化钌催化剂(Ru(OH)_x /载体,载体= TiO2或Al2O3)提出的好氧醇氧化反应的实验机理。 (OH2)3”和“ RuCl3(OH2)3”分别表示Ru(OH)_x /载体和RuCl_x /载体。可以验证实验提出的醇盐形成和β-氢化物消除步骤。在2-丁醇(作为模型底物)的情况下,Ru(OH)3(OH2)3(27.7 kJ mol〜(-1))的醇化物形成步骤的计算活化能比RuCl3小得多(OH2)3(123.2 kJ mol〜(-1)),表明与Ru(OH)_x /载体相比,与RuCl_x /载体相比,醇盐的形成更容易进行。 Ru(OH)x /载体催化剂在同一金属位点上同时具有路易斯酸(Ru中心)和布朗斯台德碱(OFT物种)位点。因此,可以通过Ru上的路易斯酸(电子从醇到Ru的电子转移)和布朗斯台德碱(电子从OH-到羟基质子的电子转移)部位的“稳定活化”来促进醇的形成步骤。 OH)_x / support。对于氢化物物种与O2的反应,给电子配体(特别是醇和OH2)的配位形成六配位的一氢化钌(Ru-H)物种是促进O2插入的关键。氢化物种类。从配体向氢化物提供的电子可以使Ru-H键更弱,从而降低O2插入步骤的活化能。最后,醇盐或氢氧化物物种随着H2O2的生成而再生,并且催化循环完成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号