...
首页> 外文期刊>The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical >Surface Oxidation of Platinum-Group Transition Metals in Ambient Gaseous Environments: Role of Electrochemical versus Chemical Pathways
【24h】

Surface Oxidation of Platinum-Group Transition Metals in Ambient Gaseous Environments: Role of Electrochemical versus Chemical Pathways

机译:周围气体环境中铂族过渡金属的表面氧化:电化学与化学途径的作用

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The effect of water vapor on the temperature-dependent surface oxidation of Pt-group metals in ambient-pressure gaseous oxygen environments is explored by means of surface-enhanced Raman spectroscopy (SERS). This exploits the ability of SERS to monitor monolayer-level oxide formation on thin Pt-group films on gold substrates in ambient gaseous as well as solution environments from the characteristic lattice vibrational (phonon) spectra. In contrast to the markedly elevated temperatures (≥200 ℃) required to initiate surface oxidation on rhodium and ruthenium in dry oxygen, the presence of water vapor triggers monolayer-level oxidation of rhodium and ruthenium surfaces even at room temperature. Exposure of initially reduced rhodium surfaces to wet O_2 at different temperatures showed that this catalytic influence of water vapor is limited to ca. 50 ℃ or below, where water forms a liquid surface film. Rhodium surface oxidation is also observed upon rinsing with aerated water. Related measurements undertaken for rhodium in aqueous electrochemical environments reveal that the electrode potential-dependent formation of metal oxide from water accounts for the water-catalyzed surface oxidation observed in both gaseous and solution-phase oxygen. This follows from the observed ability of O_2 electroreduction (to water) to shift the surface potential to sufficiently high values so to trigger water electrooxidation to surface oxide under the open-circuit conditions necessarily pertaining in the gaseous system. This "electrochemical half-reaction" pathway is markedly more facile than the alternative "thermal chemical" route necessarily followed in dry O_2. Only slight (submonolayer) surface oxidation of palladium is induced at near-ambient temperatures in gaseous wet O_2, extensive oxide production only occurring above 200 ℃, as is the case in dry oxygen. This behavior can also be understood in terms of an "electrochemical" pathway in wet gaseous O_2, the occurrence of O_2 electroreduction shifting the potential to insufficiently positive values to induce extensive water electrooxidation to oxide on palladium, due primarily to the lower thermodynamic stability of PdO compared to rhodium and ruthenium oxides. Furthermore, the inability of water to catalyze extensive palladium surface oxidation in gaseous oxygen suggests that oxide formation via a concerted metal-oxygen "place-exchange" mechanism occurs only in conjunction with the "electrochemical half-reaction" pathway.
机译:通过表面增强拉曼光谱(SERS)探索了水蒸气对环境压力气态氧环境中Pt金属的温度依赖性表面氧化的影响。这利用了SERS的能力,可以根据特征晶格振动(声子)光谱监测环境气体中以及溶液环境中金基底上铂基薄膜上单层氧化物的形成情况。与在干燥的氧气中引发铑和钌表面氧化所需的显着升高的温度(≥200℃)相反,即使在室温下,水蒸气的存在也会触发铑和钌表面的单层氧化。最初还原的铑表面在不同温度下暴露于湿的O_2表明,水蒸气的这种催化作用仅限于约。 50℃或以下,在此处水形成液体表面膜。用充气水冲洗后,还可以观察到铑表面的氧化。在水性电化学环境中对铑进行的相关测量表明,由水形成的金属氧化物与电极电势有关,这说明了在气态氧和溶液态氧中均观察到水催化的表面氧化。这是由于观察到的O_2电还原(转化为水)的能力将表面电势转变为足够高的值,从而在气态系统必不可少的开路条件下触发水电氧化为表面氧化物。这种“电化学半反应”途径比干燥的O_2中必不可少的“热化学”途径明显更容易。在接近室温的气态湿式O_2中仅引起钯的轻微(亚单层)表面氧化,仅在200℃以上才产生广泛的氧化物生成,干燥氧气中就是这种情况。这种行为也可以通过湿气态O_2中的“电化学”途径来理解,O_2电还原的发生将电势转移到不足的正值,从而导致水广泛地电氧化为钯上的氧化物,这主要是由于PdO的热力学稳定性较低与铑和钌的氧化物相比。此外,水不能催化气态氧中广泛的钯表面氧化,这表明通过协同的金属-氧“位置交换”机理形成的氧化物仅与“电化学半反应”途径结合发生。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号