【24h】

Molecular dynamics simulation of n-butane-methane mixtures in silicalite

机译:硅沸石中正丁烷-甲烷混合物的分子动力学模拟

获取原文
获取原文并翻译 | 示例
           

摘要

The transport of n-butane-methane mixtures in the zeolite silicalite has been studied. We have used long molecular dynamics simulations for the calculation of diffusion tensor components for both species over a wide range of loadings and compositions at 300 K. Self-diffusivities are seen to decrease monotonically with loading of either species. Raising the loading of n-butane from 2 to 9 molecules per unit cell causes the diffusivity of methane to drop by a factor of 60. The spatial distribution of molecules of the two co-adsorbed species was investigated, showing that, at high occupancies, n-butane molecules force methanes to partially abandon straight channel interiors and occupy the intersection regions. A conformation analysis indicates that, at high methane concentrations, n-butane molecules are forced to populate preferentially the gauche conformation. We have identified an anomalous diffusion regime for both species at higher loadings. Interestingly, anomalous effects are more pronounced for methane than for n-butane in all three directions, but most strongly in the z-direction, along which no direct channel pathway exists. Crossover to normal `Fickian' diffusion occurs at times on the order of nanoseconds. Visualization of trajectories from the dynamic simulations reveals a jumplike character of intracrystalline motion. We have studied the interaction energies for each species in each of the three silicalite environments. Sorbate-sorbate energy distributions show a strong concentration dependence.
机译:已经研究了正丁烷-甲烷混合物在沸石硅沸石中的传输。我们已经使用长时间的分子动力学模拟来计算两种物种在300 K的较大载荷和组成范围内的扩散张量分量。自扩散系数随任一种物种的加载而单调降低。将正丁烷的负载量从每晶胞2个分子增加到9个分子,会使甲烷的扩散率降低60倍。对这两种共吸附物质的分子空间分布进行了研究,结果表明,在高占有率下,正丁烷分子迫使甲烷部分放弃直通道内部并占据交叉区域。构象分析表明,在高甲烷浓度下,正丁烷分子被迫优先填充薄纱构象。我们已经确定了两个物种在较高负荷下的异常扩散机制。有趣的是,甲烷的反常效应在所有三个方向上都比正丁烷更明显,但在z方向上最为明显,沿z方向不存在直接通道途径。与正常的“菲克式”扩散相交的时间有时约为纳秒。动态仿真显示的轨迹显示出晶内运动的跳跃状特征。我们已经研究了三种硅沸石环境中每种物质的相互作用能。山梨酸酯-山梨酸酯的能量分布显示出强烈的浓度依赖性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号