首页> 外文期刊>The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical >Modeling the bacterial photosynthetic reaction center. 2. A combined quantum mechanical/molecular mechanical study of the structure of the cofactors in the reaction centers of purple bacteria
【24h】

Modeling the bacterial photosynthetic reaction center. 2. A combined quantum mechanical/molecular mechanical study of the structure of the cofactors in the reaction centers of purple bacteria

机译:模拟细菌的光合作用反应中心。 2.紫色细菌反应中心辅因子结构的量子力学/分子力学联合研究

获取原文
获取原文并翻译 | 示例
       

摘要

Ab initio and other computational studies of bacterial reaction center cofactors are usually performed using the observed (low-resolution) X-ray structures. Unfortunately, these geometries are necessarily approximate and this can have dramatic influences on calculated properties. For example, the calculated energies of the four bacteriochlorophylls in Rhodobacter sphaeroides vary by over 160 kcal mol~(-1). To overcome this problem, a combined quantum mechanical/molecular mechanical (QM/MM) method is employed to optimize the structure of the special pair and other cofactors in the photosynthetic reaction centers of Rhodopseudomonas viridis and Rhodobacter sphaeroides, while a purely MM model is used to refine the structure of the remaining protein environment. Specifically, the QM/MM optimizations are performed using a semiempirical AM1-based formalism. After relaxation, the energies of the bacteriochlorophylls differ by only typical conformer relative energies, ca. 5 kcal mol~(-1). Another example of improved cofactor properties is the P_L-P_M interaction energy which has been predicted to be strongly repulsive at the X-ray structure but here is shown to be realistically attractive after optimization. After optimization, the distortions in the geometries of the cofactor are seen to be controlled by protein-cofactor interactions, and the cofactors on the L-side are all seen to fit more snugly together within the protein environment than do their M-side counterparts. Also, the 2a-acetyl group of P_M for Rb. sphaeroides, for which hydrogen bonding to the protein is restricted, is predicted to form a weakly bound sixth ligand to the magnesium of P_L; this is consistent with, but not obvious from, the X-ray structure.
机译:细菌反应中心辅助因子的从头算和其他计算研究通常使用观察到的(低分辨率)X射线结构进行。不幸的是,这些几何形状必然是近似的,并且这可能对计算出的特性产生巨大的影响。例如,球形球形红细菌中四种细菌叶绿素的计算能量相差超过160 kcal mol〜(-1)。为了克服这个问题,采用了量子力学/分子力学(QM / MM)组合方法来优化绿假红假单胞菌和球形红假单胞菌的光合作用中心的特殊对和其他辅因子的结构,同时使用了纯MM模型改善剩余蛋白质环境的结构。具体来说,使用基于半经验式AM1的形式主义来执行QM / MM优化。松弛后,细菌叶绿素的能量仅以典型的构象异构体相对能量而不同。 5 kcal mol〜(-1)。改善的辅助因子特性的另一个例子是P_L-P_M相互作用能,据预测它在X射线结构上具有强烈排斥力,但在优化后实际上具有吸引力。经过优化后,辅因子的几何结构变形被认为是受蛋白质-辅因子相互作用控制的,并且L侧的辅因子比M侧的辅因子都更紧密地适合蛋白质环境。同样,Rb的P_M的2a-乙酰基。据预测,与蛋白质的氢键受到限制的红球菌会与P_L的镁形成弱结合的第六配体。这与X射线结构是一致的,但从X射线结构来看并不明显。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号