首页> 外文期刊>The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical >Resonance Raman and UV-Vis Spectroscopic Characterization of FADH~· in the Complex of Photolyase with UV-Damaged DNA
【24h】

Resonance Raman and UV-Vis Spectroscopic Characterization of FADH~· in the Complex of Photolyase with UV-Damaged DNA

机译:脱氧核糖核酸与光解酶复合物中FADH〜·的共振拉曼光谱和紫外-可见光谱表征

获取原文
获取原文并翻译 | 示例
       

摘要

Escherichia coli photolyase uses blue light to repair cyclobutane pyrimidine dimers which are formed upon irradiation of DNA with ultraviolet (UV) light. E. coli photolyase is a flavoenzyme which contains a flavin adenine dinucleotide (FAD) in its active site and a 5,10-methenyltetrahydrofolate (MTHF) as a light-harvesting pigment. In the isolated enzyme, the FAD cofactor is present as a stable neutral radical semiquinone (FADH~·). In this paper, we investigate the interaction between photolyase and UV-damaged DNA by using resonance Raman and UV-vis spectroscopy. Substrate binding results in intensity changes and frequency shifts of the FADH~· vibrations and also induces electrochromic shifts of the FADH~· electronic transitions because of the substrate electric dipole moment. The intensity changes in the resonance Raman spectra can be largely explained by changes in the Raman excitation profiles because of the electrochromic shift. The size of the electrochromic shift suggests that the substrate binding geometry is similar to that of oxidized FAD in reconstituted photolyase. The frequency changes are partially a manifestation of the vibrational Stark effect induced by the substrate electric dipole moment but also because of small perturbations of the hydrogen-bonding environment of PADH~· upon substrate binding. Furthermore, difference in the resonance Raman spectra of MTHF-containing photolyase and of an MTHF-less mutant suggests that MTHF may play a structural role in stabilizing the active site of photolyase while comparison to other flavoproteins indicates that the FAD cofactor has a strong hydrogen-bonding protein environment. Finally, we show that the electronic shift can be used as a direct method to measure photolyase-substrate binding kinetics.
机译:大肠杆菌光解酶使用蓝光修复环丁烷嘧啶二聚体,该二聚体是在用紫外线(UV)照射DNA时形成的。大肠杆菌光裂解酶是一种黄素酶,在其活性位点含有黄素腺嘌呤二核苷酸(FAD)和5,10-亚甲基四氢叶酸(MTHF)作为聚光颜料。在分离的酶中,FAD辅因子以稳定的中性自由基半醌(FADH〜·)的形式存在。在本文中,我们通过共振拉曼光谱和紫外可见光谱研究光解酶和紫外线损伤的DNA之间的相互作用。底物的结合导致FADH〜·振动的强度变化和频率偏移,并且由于底物的电偶极矩而引起FADH〜·电子跃迁的电致变色偏移。共振拉曼光谱的强度变化很大程度上可以归因于电致变色拉曼光谱的变化。电致变色位移的大小表明底物结合的几何形状与重构的光裂解酶中的氧化FAD相似。频率变化部分是由底物电偶极矩引起的振动斯塔克效应的体现,也是由于底物结合时PADH〜·的氢键环境的扰动较小。此外,含MTHF的光裂解酶和无MTHF的突变体在共振拉曼光谱上的差异表明,MTHF可能在稳定光裂解酶的活性位点方面发挥结构作用,而与其他黄素蛋白相比则表明FAD辅因子具有较强的氢原子。结合蛋白的环境。最后,我们证明了电子位移可以用作测量光裂解酶-底物结合动力学的直接方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号